|
3 년 전 | |
---|---|---|
picture | 5 년 전 | |
tasks | 3 년 전 | |
.DS_Store | 3 년 전 | |
README.md | 3 년 전 | |
defaults | 3 년 전 | |
inputs | 3 년 전 | |
workflow.wdl | 3 년 전 |
A C program, ngscheckmate_fastq, can be directly called to generate a VAF file from one FASTQ file (single-end sequencing) or two FASTQ files(paired-end sequencing).
Then, another script, vaf_ncm.py is used to read a set of VAF files to complete the downstream analysis. When you need to analyze many FASTQ files, the first VAF file generation using ngscheckmate_fastq can be parallelized.
If you want to analyze the correlation of samples over multiple runs, I suggest you to save the historical vaf
files and download the NGSCheckMate from https://github.com/parklab/NGSCheckMate and then run vaf_ncm.py locally.
We recommend using choppy system and Aliyun OSS service. The command will look like this:
# Activate the choppy environment
$ open-choppy-env
# Install the APP
$ choppy install YaqingLiu/NGSCheckMate_parallel-latest [-f]
# List the parameters
$ choppy samples YaqingLiu/NGSCheckMate_parallel-latest [--no-default]
# Submit you task with the `samples.json file` and `project name`
$ choppy batch YaqingLiu/NGSCheckMate_parallel-latest samples.json -p Project [-l project:Label]
# Query the status of all tasks in the project
$ choppy query -L project:Label | grep "status"
{
"sample_id": "test",
"fastq1": ["fq1_1", "fq1_2", ..., "fq1_n"],
"fastq2": ["fq2_1", "fq2_2", ..., "fq2_n"],
"output_id": ["out_id1", "out_id2", ..., "out_idn"]
}