Infer and visualize copy number from high-throughput DNA sequencing data.
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
4 лет назад
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. # CNVkit
  2. > Author: Yaqing Liu
  3. >
  4. > E-mail: yaqing.liu@outlook.com
  5. >
  6. CNVkit is a Python library and command-line software toolkit to infer and visualize copy number from high-throughput DNA sequencing data. It is designed for use with hybrid capture, including both whole-exome and custom target panels, and short-read sequencing platforms such as Illumina and Ion Torrent.
  7. Official document: https://cnvkit.readthedocs.io/en/stable/index.html
  8. ## Install
  9. ```
  10. # activate choppy environment
  11. open-choppy-env
  12. # install app
  13. choppy install YaqingLiu/CNVkit
  14. ```
  15. ## Copy number calling pipeline
  16. ![image](https://cnvkit.readthedocs.io/en/stable/_images/workflow.png)
  17. ## Input
  18. ```json
  19. {
  20. "tumor_bam": [
  21. "oss://choppy-cromwell-result/...bam",
  22. "oss://choppy-cromwell-result/...bam",
  23. "oss://choppy-cromwell-result/...bam"
  24. ],
  25. "tumor_bai": [
  26. "oss://choppy-cromwell-result/...bai",
  27. "oss://choppy-cromwell-result/...bai",
  28. "oss://choppy-cromwell-result/...bai"
  29. ],
  30. "normal_bam": [
  31. "oss://choppy-cromwell-result/...bam",
  32. "oss://choppy-cromwell-result/...bam",
  33. "oss://choppy-cromwell-result/...bam"
  34. ],
  35. "normal_bai": [
  36. "oss://choppy-cromwell-result/...bai",
  37. "oss://choppy-cromwell-result/...bai",
  38. "oss://choppy-cromwell-result/...bai"
  39. ],
  40. "sample_id": "...",
  41. "method": "...",
  42. "reference": "..." # this parameter is optional
  43. }
  44. ```
  45. ***Note***
  46. ```shell
  47. -m {hybrid,amplicon,wgs}, --seq-method {hybrid,amplicon,wgs}, --method {hybrid,amplicon,wgs}
  48. Sequencing assay type: hybridization capture ('hybrid'), targeted amplicon sequencing ('amplicon'), or whole genome sequencing ('wgs').
  49. Determines whether and how to use antitarget bins.
  50. To reuse an existing reference or create a new :
  51. -r REFERENCE, --reference REFERENCE
  52. Copy number reference file (.cnn).
  53. --output-reference FILENAME
  54. Output filename/path for the new reference file being created. (If given, ignores the -o/--output-dir option and will write the file to the given path. Otherwise, "reference.cnn" will be created in the current directory or specified output directory.)
  55. --annotate
  56. The gene annotations file (refFlat.txt) is useful to apply gene names to your baits BED file, if the BED file does not already have short, informative names for each bait interval. This file can be used in the next step.
  57. If the BED looks like this:
  58. > chr1 1508981 1509154 SSU72
  59. > chr1 2407978 2408183 PLCH2
  60. > chr1 2409866 2410095 PLCH2
  61. Then you don’t need refFlat.txt.
  62. ```
  63. ## Output
  64. 1. *.cnn/cns of each sample.
  65. 2. A whole-genome copy ratio profile as a PDF scatter plot.
  66. 3. An ideogram of copy ratios on chromosomes as a PDF.
  67. 4. A segment file which can be imported into IGV.