It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table.
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
YJC fc17258541 Improve the README.md. 3 лет назад
..
corrplot/bin Fix some bugs. 3 лет назад
examples First Commit. 3 лет назад
renv First Commit. 3 лет назад
templates Support datafile from http server. 3 лет назад
.Rprofile First Commit. 3 лет назад
README.md Improve the README.md. 3 лет назад
renv.lock First Commit. 3 лет назад
tservice-plugin.yaml Improve the README.md. 3 лет назад

README.md

Correlation Plot

Correlation plots can be used to quickly find insights. It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table. In this visual, correlation coefficients are colored according to the value. Correlation matrix can be also reordered according to the degree of association between variables or clustered using hierarchical clustering algorithm. The usage of this visual is very simple and intuitive.

Here is how it works:

  • Define numerical variables to be examined (two or more columns)
  • Use numerous formatting controls to refine the visual apperance of the plot

Arguments

  • name* The name of the corrplot chart.

  • datafile* Where is the data?

  • corr_vars* Which columns do you want to analyze?

  • method Optional, The visualization method of correlation matrix to be used. Allowed values are square (default), circle.

  • corr_type Optional, full (default), lower or upper display.

  • hc_method Optional, The agglomeration method to be used in hclust (see ?hclust).

  • hc_order Logical value. If TRUE, correlation matrix will be hc.ordered using hclust function.

  • sig_level Significant level, greater than 0 and less than 1.