It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table.
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
YJC fc17258541 Improve the README.md. pirms 3 gadiem
..
corrplot/bin Fix some bugs. pirms 3 gadiem
examples First Commit. pirms 3 gadiem
renv First Commit. pirms 3 gadiem
templates Support datafile from http server. pirms 3 gadiem
.Rprofile First Commit. pirms 3 gadiem
README.md Improve the README.md. pirms 3 gadiem
renv.lock First Commit. pirms 3 gadiem
tservice-plugin.yaml Improve the README.md. pirms 3 gadiem

README.md

Correlation Plot

Correlation plots can be used to quickly find insights. It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table. In this visual, correlation coefficients are colored according to the value. Correlation matrix can be also reordered according to the degree of association between variables or clustered using hierarchical clustering algorithm. The usage of this visual is very simple and intuitive.

Here is how it works:

  • Define numerical variables to be examined (two or more columns)
  • Use numerous formatting controls to refine the visual apperance of the plot

Arguments

  • name* The name of the corrplot chart.

  • datafile* Where is the data?

  • corr_vars* Which columns do you want to analyze?

  • method Optional, The visualization method of correlation matrix to be used. Allowed values are square (default), circle.

  • corr_type Optional, full (default), lower or upper display.

  • hc_method Optional, The agglomeration method to be used in hclust (see ?hclust).

  • hc_order Logical value. If TRUE, correlation matrix will be hc.ordered using hclust function.

  • sig_level Significant level, greater than 0 and less than 1.