|
|
|
|
|
|
|
|
|
|
|
# NGS Check mates |
|
|
|
|
|
|
|
|
|
|
|
> Author: Ren Luyao |
|
|
|
|
|
> |
|
|
|
|
|
> E-mail: 18110700050@fudan.edu.cn |
|
|
|
|
|
> |
|
|
|
|
|
> Git: http://choppy.3steps.cn/renluyao/NGScheckMates.git |
|
|
|
|
|
> |
|
|
|
|
|
> Last Updates: 2019/02/08 |
|
|
|
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
|
source activate choppy |
|
|
|
|
|
choppy install renluyao/NGScheckMates |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
# APP概述 |
|
|
|
|
|
|
|
|
|
|
|
NGScheckMates是用来检测某几个测序数据是否来自于同一个人,有以下几种应用场景: |
|
|
|
|
|
|
|
|
|
|
|
(1)多组学研究,RNAseq和DNAseq是否是来自同一个人; |
|
|
|
|
|
|
|
|
|
|
|
(2)被标注为配对的Tumor和Normal样本是否是来自同一个人; |
|
|
|
|
|
|
|
|
|
|
|
(3)同一批样本,多次测序,其中有没有被标错的样本。 |
|
|
|
|
|
|
|
|
|
|
|
推荐直接用fastq模式,优点:如果有多种不同测序文件,比如一个项目中有WES和RNAseq,你要研究WES找到的候选突变是否影响了基因表达量的改变,你需要检查WES和RNAseq的数据是否来自同一个人,以确保分析结果的正确性。直接用fastq模式可以不用单独对RNAseq call germline mutation,以节省时间。这一步将单独运行一个脚本。 |
|
|
|
|
|
|
|
|
|
|
|
基于fastq文件检查样本的配对情况的原理是:他们首先从dbSNP数据库中选择了21067个位于外显子上的SNP用于预测样本配对。对于不用比对的fastq模式,他们在参考基因组中寻找了可以与参考基因组完全匹配的21bp长度的k-mer,位于这些k-mer上的SNP只剩下了11696个。然后用k-mer扫描fastq文件,计算每个SNP的VAF,再根据多个SNP的VAF计算样本间两两的相关性判断两个样本是否来源于一个人。 |
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
# 流程与参数 |
|
|
|
|
|
|
|
|
|
|
|
- Required arguments |
|
|
|
|
|
|
|
|
|
|
|
`-l` 需要检测的fastq或者fastq.gz文件的表格,格式如下: |
|
|
|
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
|
FASTQ_FILE1 (tab) FASTQ_FILE2 (tab) SAMPLE_NAME (\n) |
|
|
|
|
|
Example: |
|
|
|
|
|
/data/LSJ_R1.fastq /data/LSJ_R2.fastq LSJ |
|
|
|
|
|
/data/LSH_R1.fastq /data/LSH_R2.fastq LSH |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
`-pt` 是一个包含SNP位点的二进制文件,这些位点可以用与样本的配对检查,在下载包中,路径为`SNP/SNP.pt` |
|
|
|
|
|
|
|
|
|
|
|
`-O` 输出文件夹 |
|
|
|
|
|
|
|
|
|
|
|
- Optional arguments |
|
|
|
|
|
|
|
|
|
|
|
`-N` 输出文件夹的前缀,default:“output” |
|
|
|
|
|
|
|
|
|
|
|
`-f` 当你的样本中有父母与孩子或者兄弟姐妹时,加上这个参数,使用更严格的VAF相关系数的阈值 |
|
|
|
|
|
|
|
|
|
|
|
`-nz` Use the mean of non-zero depths across the SNPs as reference depth, default: Use the mean depth across all the SNPs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`-s` The read subsampling rate, default: 1.0 |
|
|
|
|
|
|
|
|
|
|
|
`-d` The target depth for read subsampling. NGSCheckMate calculates a subsampling rate based on this target depth. |
|
|
|
|
|
|
|
|
|
|
|
`-R` The length of the genomic region with read mapping (default: 3x10^9) used to compute subsampling rate. If your data is NOT human WGS and you use the -d option, it is highly recommended that specify this value. For instance, if your data is human RNA-seq, the genomic length with read mapping is ~3% of the human genome (1x10^8) |
|
|
|
|
|
|
|
|
|
|
|
注意:如果你的fastq文件特别大,它的计算会特别慢,三个参数的使用可以通过subsampling的方法加快运算速度,文献中报道只要0.5X深度的数据就能有很好的预测效果,有两种选择: |
|
|
|
|
|
|
|
|
|
|
|
- 只使用 -s ,意思是fastq原始文件的百分之多少,如果你的fastq文件太大,运算速度很比较慢,可以使用其中一部分数据运算,不会影响运算结果,比如,30%就是`-s 0.3` |
|
|
|
|
|
- 需要通过使用-d 和-R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`-L` The length of the flanking sequence of the SNPs, default: 21bp. It is not recommended that you change this value unless you create your own pattern file (.pt) with a different length. |
|
|
|
|
|
|
|
|
|
|
|
`-p` 线程数,default:1 |
|
|
|
|
|
|
|
|
|
|
|
# APP输入变量与输入文件 |
|
|
|
|
|
|
|
|
|
|
|
(1)准备样本文件 |
|
|
|
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
|
choppy samples NGScheckMates --output samples |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
samples文件中输入是 |
|
|
|
|
|
|
|
|
|
|
|
- fastq_dir |
|
|
|
|
|
|
|
|
|
|
|
fastq文件的地址,阿里云上的地址;如果需要使用多个项目的fastq文件,输入两个项目文件夹的上一级共同目录 |
|
|
|
|
|
|
|
|
|
|
|
- Input_file |
|
|
|
|
|
|
|
|
|
|
|
一个txt文件,需要进行计算的文件的详细文件名,文件的地址按照要求修改 |
|
|
|
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
|
#read1 #read2 #sample_name |
|
|
|
|
|
/cromwell_inputs/*/directory_name/read1.fastq.gz /cromwell_inputs/*/directory_name/read2.fastq.gz sample_name |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
# APP输出结果 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 结果展示与解读 |
|
|
|
|
|
|