VEP (Variant Effect Predictor) predicts the functional effects of genomic variants. The annotated VCF will be converted into MAF based on vcf2maf.
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

74 行
2.3KB

  1. task VEP {
  2. File vcf
  3. String sample_id
  4. String basename = basename(vcf,".vcf")
  5. String tumor_id
  6. String normal_id
  7. File ref_dir
  8. String fasta
  9. String vep_path
  10. File cache
  11. String ncbi_build
  12. String species
  13. String vcf2maf_path
  14. String docker
  15. String cluster_config
  16. String disk_size
  17. command <<<
  18. set -o pipefail
  19. set -e
  20. nt=$(nproc)
  21. awk -F'\t' '{if(($1~"^#")||($1!~"^#" && $7=="PASS")){print $0}}' ${vcf} > ${sample_id}.PASS.vcf
  22. # Extract the BND variants from VCF
  23. # awk -F'\t' '{if(($1~"^#")||($8!~".*SVTYPE=BND.*")){print $0}}' ${sample_id}.PASS.vcf > ${sample_id}.PASS.vcf2maf.vcf
  24. # awk -F'\t' '{if(($1~"^#")||($8~".*SVTYPE=BND.*")){print $0}}' ${sample_id}.PASS.vcf > ${sample_id}.INPUT.VEP.vcf
  25. # vcf2maf
  26. # perl ${vcf2maf_path}/vcf2maf.pl \
  27. # --input-vcf ${sample_id}.PASS.vcf2maf.vcf --output-maf ${basename}.maf \
  28. # --tumor-id ${tumor_id} --normal-id ${normal_id} \
  29. # --ref-fasta ${ref_dir}/${fasta} \
  30. # --vep-path ${vep_path} \
  31. # --vep-data ${cache} \
  32. # --ncbi-build ${ncbi_build} \
  33. # --species ${species} \
  34. # --vep-fork $nt
  35. # vep
  36. perl ${vep_path}/vep \
  37. --input_file ${sample_id}.PASS.vcf --output_file ${basename}.vep.vcf \
  38. --fasta ${ref_dir}/${fasta} \
  39. --dir ${cache} \
  40. --assembly ${ncbi_build} \
  41. --species ${species} \
  42. --fork $nt \
  43. --format vcf --vcf \
  44. --no_progress --no_stats --buffer_size 5000 --sift b --ccds --uniprot --hgvs --symbol --numbers --domains --gene_phenotype --canonical --protein --biotype --uniprot --tsl --variant_class --shift_hgvs 1 --check_existing --total_length --allele_number --no_escape --xref_refseq --failed 1 --flag_pick_allele --pick_order canonical,tsl,biotype,rank,ccds,length --force_overwrite --offline --pubmed --regulatory
  45. # vcf2maf
  46. perl ${vcf2maf_path}/vcf2maf.pl \
  47. --inhibit-vep \
  48. --input-vcf ${basename}.vep.vcf --output-maf ${basename}.maf \
  49. --tumor-id ${tumor_id} --normal-id ${normal_id} \
  50. --ref-fasta ${ref_dir}/${fasta} \
  51. --vep-fork $nt
  52. >>>
  53. runtime {
  54. docker: docker
  55. cluster: cluster_config
  56. systemDisk: "cloud_ssd 40"
  57. dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/"
  58. }
  59. output {
  60. File input_vcf = "${sample_id}.PASS.vcf"
  61. File vep_vcf = "${basename}.vep.vcf"
  62. File maf = "${basename}.maf"
  63. }
  64. }