|
|
@@ -0,0 +1,49 @@ |
|
|
|
# RNA-seq sex-check APP
|
|
|
|
|
|
|
|
## 构建方法
|
|
|
|
|
|
|
|
1. Identify sex-specific genes based on GTEx dataset
|
|
|
|
- In specific tissue type: female vs male: |logFC| >1 and t-test p value <0.05
|
|
|
|
- Identified as a sex-specific genes across all 22 tissue types
|
|
|
|
|
|
|
|
2. Identify method and cutoff using 70% of TCGA dataset
|
|
|
|
- Pairwise comparison: ExpMale-specific vs ExpFemale-specific
|
|
|
|
- Cutoff: n of comparisons >0: male, otherwise female
|
|
|
|
3. Validate method based on external and independent datasets
|
|
|
|
- 30% of TCGA dataset
|
|
|
|
- lung cancer dataset
|
|
|
|
- TNBC dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 结果
|
|
|
|
|
|
|
|
### Sex-specific genes in GTEx
|
|
|
|
|
|
|
|
- Nineteen male-specific and two female-specific genes are identified.
|
|
|
|
- Five male-specific and two female-specific genes are selected for further analysis.
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 训练集结果
|
|
|
|
|
|
|
|
基于训练集,10次Male vs Female specific基因比较中,8次或以上Male > Female specific gene,则为Male,反之则为Female
|
|
|
|
|
|
|
|
### 测试集结果
|
|
|
|
|
|
|
|
都不错。
|
|
|
|
|
|
|
|
| Dataset | TP | FP | FN | TN | Precision | Sensitivity | Specificity | F1 |
|
|
|
|
| -------------- | ---- | ---- | ---- | ---- | --------- | ----------- | ----------- | ----- |
|
|
|
|
| TrainData_TCGA | 3748 | 48 | 27 | 4419 | 0.987 | 0.993 | 0.989 | 0.990 |
|
|
|
|
| TestData_TCGA | 1626 | 23 | 11 | 1873 | 0.986 | 0.993 | 0.988 | 0.990 |
|
|
|
|
| TestData_LC | 153 | 3 | 0 | 241 | 0.981 | 1.000 | 0.988 | 0.990 |
|
|
|
|
| TestData TNBC | 0 | 0 | 0 | 448 | NA | NA | 1 | NA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### 结论
|
|
|
|
|
|
|
|
建立了预测性别的方法:对每个待测样本,提取5个男性特有基因(RPS4Y1, DDX3Y, EIF1AY, KDM5D, TXLNGY)和2个女性特有基因(XIST, TSIX) 的表达水平,进行男性特有基因与女性特有基因的两两比较,共10次比较中,若超过(>=)8次比较中,男性特有基因表达水平高于女性特有基因表达水平,则为男性,反之则为女性。 |