It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table.
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.
YJC fc17258541 Improve the README.md. 3 роки тому
..
corrplot/bin Fix some bugs. 3 роки тому
examples First Commit. 3 роки тому
renv First Commit. 3 роки тому
templates Support datafile from http server. 3 роки тому
.Rprofile First Commit. 3 роки тому
README.md Improve the README.md. 3 роки тому
renv.lock First Commit. 3 роки тому
tservice-plugin.yaml Improve the README.md. 3 роки тому

README.md

Correlation Plot

Correlation plots can be used to quickly find insights. It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table. In this visual, correlation coefficients are colored according to the value. Correlation matrix can be also reordered according to the degree of association between variables or clustered using hierarchical clustering algorithm. The usage of this visual is very simple and intuitive.

Here is how it works:

  • Define numerical variables to be examined (two or more columns)
  • Use numerous formatting controls to refine the visual apperance of the plot

Arguments

  • name* The name of the corrplot chart.

  • datafile* Where is the data?

  • corr_vars* Which columns do you want to analyze?

  • method Optional, The visualization method of correlation matrix to be used. Allowed values are square (default), circle.

  • corr_type Optional, full (default), lower or upper display.

  • hc_method Optional, The agglomeration method to be used in hclust (see ?hclust).

  • hc_order Logical value. If TRUE, correlation matrix will be hc.ordered using hclust function.

  • sig_level Significant level, greater than 0 and less than 1.