It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table.
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
YJC 42d8af9761 Improve the README.md. 3 anos atrás
..
corrplot/bin Fix some bugs. 3 anos atrás
examples First Commit. 3 anos atrás
renv First Commit. 3 anos atrás
templates Support datafile from http server. 3 anos atrás
.Rprofile First Commit. 3 anos atrás
README.md Improve the README.md. 3 anos atrás
renv.lock First Commit. 3 anos atrás
tservice-plugin.yaml Improve the README.md. 3 anos atrás

README.md

Correlation Plot

Correlation plots can be used to quickly find insights. It is used to investigate the dependence between multiple variables at the same time and to highlight the most correlated variables in a data table. In this visual, correlation coefficients are colored according to the value. Correlation matrix can be also reordered according to the degree of association between variables or clustered using hierarchical clustering algorithm. The usage of this visual is very simple and intuitive.

Here is how it works:

  • Define numerical variables to be examined (two or more columns)
  • Use numerous formatting controls to refine the visual apperance of the plot

Arguments

  • name* The name of the corrplot chart.

  • datafile* Where is the data?

  • corr_vars* Which columns do you want to analyze?

  • method Optional, The visualization method of correlation matrix to be used. Allowed values are square (default), circle.

  • corr_type Optional, full (default), lower or upper display.

  • hc_method Optional, The agglomeration method to be used in hclust (see ?hclust).

  • hc_order Logical value. If TRUE, correlation matrix will be hc.ordered using hclust function.

  • sig_level Significant level, greater than 0 and less than 1.