您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

134 行
7.2KB

  1. import json
  2. import pandas as pd
  3. from functools import reduce
  4. import sys, argparse, os
  5. parser = argparse.ArgumentParser(description="This script is to get information from multiqc and sentieon, output the raw fastq, bam and variants calling (precision and recall) quality metrics")
  6. parser.add_argument('-quality', '--quality_yield', type=str, help='*.quality_yield.txt')
  7. parser.add_argument('-depth', '--wgs_metrics', type=str, help='*deduped_WgsMetricsAlgo.txt')
  8. parser.add_argument('-aln', '--aln_metrics', type=str, help='*_deduped_aln_metrics.txt')
  9. parser.add_argument('-is', '--is_metrics', type=str, help='*_deduped_is_metrics.txt')
  10. parser.add_argument('-fastqc', '--fastqc', type=str, help='multiqc_fastqc.txt')
  11. parser.add_argument('-fastqscreen', '--fastqscreen', type=str, help='multiqc_fastq_screen.txt')
  12. parser.add_argument('-hap', '--happy', type=str, help='multiqc_happy_data.json', required=True)
  13. parser.add_argument('-project', '--project_name', type=str, help='project_name')
  14. args = parser.parse_args()
  15. if args.quality_yield:
  16. # Rename input:
  17. quality_yield_file = args.quality_yield
  18. wgs_metrics_file = args.wgs_metrics
  19. aln_metrics_file = args.aln_metrics
  20. is_metrics_file = args.is_metrics
  21. fastqc_file = args.fastqc
  22. fastqscreen_file = args.fastqscreen
  23. hap_file = args.happy
  24. project_name = args.project_name
  25. #############################################
  26. # fastqc
  27. fastqc = pd.read_table(fastqc_file)
  28. # fastqscreen
  29. dat = pd.read_table(fastqscreen_file)
  30. fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')]
  31. dat['Sample'] = [i.replace('_screen','') for i in dat['Sample']]
  32. fastqscreen.insert(loc=0, column='Sample', value=dat['Sample'])
  33. # pre-alignment
  34. pre_alignment_dat = pd.merge(fastqc,fastqscreen,how="outer",left_on=['Sample'],right_on=['Sample'])
  35. pre_alignment_dat['FastQC_mqc-generalstats-fastqc-total_sequences'] = pre_alignment_dat['FastQC_mqc-generalstats-fastqc-total_sequences']/1000000
  36. del pre_alignment_dat['FastQC_mqc-generalstats-fastqc-percent_fails']
  37. del pre_alignment_dat['FastQC_mqc-generalstats-fastqc-avg_sequence_length']
  38. del pre_alignment_dat['ERCC percentage']
  39. del pre_alignment_dat['Phix percentage']
  40. del pre_alignment_dat['Mouse percentage']
  41. pre_alignment_dat = pre_alignment_dat.round(2)
  42. pre_alignment_dat.columns = ['Sample','%Dup','%GC','Total Sequences (million)','%Human','%EColi','%Adapter','%Vector','%rRNA','%Virus','%Yeast','%Mitoch','%No hits']
  43. pre_alignment_dat.to_csv('pre_alignment.txt',sep="\t",index=0)
  44. ############################
  45. dat = pd.read_table(aln_metrics_file,index_col=False)
  46. dat['PCT_ALIGNED_READS'] = dat["PF_READS_ALIGNED"]/dat["TOTAL_READS"]
  47. aln_metrics = dat[["Sample", "PCT_ALIGNED_READS","PF_MISMATCH_RATE"]]
  48. aln_metrics = aln_metrics * 100
  49. aln_metrics['Sample'] = [x[-1] for x in aln_metrics['Sample'].str.split('/')]
  50. dat = pd.read_table(is_metrics_file,index_col=False)
  51. is_metrics = dat[['Sample', 'MEDIAN_INSERT_SIZE']]
  52. is_metrics['Sample'] = [x[-1] for x in is_metrics['Sample'].str.split('/')]
  53. dat = pd.read_table(quality_yield_file,index_col=False)
  54. dat['%Q20'] = dat['Q20_BASES']/dat['TOTAL_BASES']
  55. dat['%Q30'] = dat['Q30_BASES']/dat['TOTAL_BASES']
  56. quality_yield = dat[['Sample','%Q20','%Q30']]
  57. quality_yield = quality_yield * 100
  58. quality_yield['Sample'] = [x[-1] for x in quality_yield['Sample'].str.split('/')]
  59. dat = pd.read_table(wgs_metrics_file,index_col=False)
  60. wgs_metrics = dat[['Sample','MEDIAN_COVERAGE','PCT_1X', 'PCT_5X', 'PCT_10X','PCT_30X']]
  61. wgs_metrics['PCT_1X'] = wgs_metrics['PCT_1X'] * 100
  62. wgs_metrics['PCT_5X'] = wgs_metrics['PCT_5X'] * 100
  63. wgs_metrics['PCT_10X'] = wgs_metrics['PCT_10X'] * 100
  64. wgs_metrics['PCT_30X'] = wgs_metrics['PCT_30X'] * 100
  65. wgs_metrics['Sample'] = [x[-1] for x in wgs_metrics['Sample'].str.split('/')]
  66. data_frames = [aln_metrics, is_metrics, quality_yield, wgs_metrics]
  67. post_alignment_dat = reduce(lambda left,right: pd.merge(left,right,on=['Sample'],how='outer'), data_frames)
  68. post_alignment_dat.columns = ['Sample', '%Mapping', '%Mismatch Rate', 'Mendelian Insert Size','%Q20', '%Q30', 'Median Coverage', 'PCT_1X', 'PCT_5X', 'PCT_10X','PCT_30X']
  69. post_alignment_dat = post_alignment_dat.round(2)
  70. post_alignment_dat.to_csv('post_alignment.txt',sep="\t",index=0)
  71. #########################################
  72. # variants calling
  73. with open(hap_file) as hap_json:
  74. happy = json.load(hap_json)
  75. dat =pd.DataFrame.from_records(happy)
  76. dat = dat.loc[:, dat.columns.str.endswith('ALL')]
  77. dat_transposed = dat.T
  78. dat_transposed = dat_transposed.loc[:,['sample_id','QUERY.TOTAL','METRIC.Precision','METRIC.Recall']]
  79. indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]]
  80. snv = dat_transposed[['SNP' in s for s in dat_transposed.index]]
  81. indel.reset_index(drop=True, inplace=True)
  82. snv.reset_index(drop=True, inplace=True)
  83. benchmark = pd.concat([snv, indel], axis=1)
  84. benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'METRIC.Precision', 'METRIC.Recall']]
  85. benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']
  86. benchmark = benchmark[['Sample','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']]
  87. benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
  88. benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
  89. benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
  90. benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
  91. benchmark['SNV precision'] = benchmark['SNV precision'] * 100
  92. benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100
  93. benchmark['SNV recall'] = benchmark['SNV recall'] * 100
  94. benchmark['INDEL recall'] = benchmark['INDEL recall']* 100
  95. benchmark = benchmark.round(2)
  96. benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)
  97. else:
  98. hap_file = args.happy
  99. with open(hap_file) as hap_json:
  100. happy = json.load(hap_json)
  101. dat =pd.DataFrame.from_records(happy)
  102. dat = dat.loc[:, dat.columns.str.endswith('ALL')]
  103. dat_transposed = dat.T
  104. dat_transposed = dat_transposed.loc[:,['sample_id','QUERY.TOTAL','METRIC.Precision','METRIC.Recall']]
  105. indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]]
  106. snv = dat_transposed[['SNP' in s for s in dat_transposed.index]]
  107. indel.reset_index(drop=True, inplace=True)
  108. snv.reset_index(drop=True, inplace=True)
  109. benchmark = pd.concat([snv, indel], axis=1)
  110. benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'METRIC.Precision', 'METRIC.Recall']]
  111. benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']
  112. benchmark = benchmark[['Sample','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']]
  113. benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
  114. benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
  115. benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
  116. benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
  117. benchmark['SNV precision'] = benchmark['SNV precision'] * 100
  118. benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100
  119. benchmark['SNV recall'] = benchmark['SNV recall'] * 100
  120. benchmark['INDEL recall'] = benchmark['INDEL recall']* 100
  121. benchmark = benchmark.round(2)
  122. benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)