Przeglądaj źródła

docker

tags/v0.1.0
LUYAO REN 2 lat temu
rodzic
commit
2deaec9be5
2 zmienionych plików z 23 dodań i 9 usunięć
  1. +22
    -8
      codescripts/extract_tables.py
  2. +1
    -1
      defaults

+ 22
- 8
codescripts/extract_tables.py Wyświetl plik

wgs_metrics_file = args.wgs_metrics wgs_metrics_file = args.wgs_metrics
aln_metrics_file = args.aln_metrics aln_metrics_file = args.aln_metrics
is_metrics_file = args.is_metrics is_metrics_file = args.is_metrics
hs_metrics_file = args.hs_metrics
fastqc_file = args.fastqc fastqc_file = args.fastqc
fastqscreen_file = args.fastqscreen fastqscreen_file = args.fastqscreen
hap_file = args.happy hap_file = args.happy
wgs_metrics['PCT_20X'] = wgs_metrics['PCT_20X'] * 100 wgs_metrics['PCT_20X'] = wgs_metrics['PCT_20X'] * 100
wgs_metrics['PCT_30X'] = wgs_metrics['PCT_30X'] * 100 wgs_metrics['PCT_30X'] = wgs_metrics['PCT_30X'] * 100
wgs_metrics['Sample'] = [x[-1] for x in wgs_metrics['Sample'].str.split('/')] wgs_metrics['Sample'] = [x[-1] for x in wgs_metrics['Sample'].str.split('/')]
dat = pd.read_table(hs_metrics_file,index_col=False)
hs_metrics = dat[['Sample','FOLD_80_BASE_PENALTY','PCT_USABLE_BASES_ON_TARGET']] hs_metrics = dat[['Sample','FOLD_80_BASE_PENALTY','PCT_USABLE_BASES_ON_TARGET']]
data_frames = [aln_metrics, is_metrics, quality_yield, wgs_metrics, hs_metrics] data_frames = [aln_metrics, is_metrics, quality_yield, wgs_metrics, hs_metrics]
post_alignment_dat = reduce(lambda left,right: pd.merge(left,right,on=['Sample'],how='outer'), data_frames) post_alignment_dat = reduce(lambda left,right: pd.merge(left,right,on=['Sample'],how='outer'), data_frames)
dat =pd.DataFrame.from_records(happy) dat =pd.DataFrame.from_records(happy)
dat = dat.loc[:, dat.columns.str.endswith('ALL')] dat = dat.loc[:, dat.columns.str.endswith('ALL')]
dat_transposed = dat.T dat_transposed = dat.T
dat_transposed = dat_transposed.loc[:,['sample_id','QUERY.TOTAL','METRIC.Precision','METRIC.Recall']]
dat_transposed = dat_transposed.loc[:,['sample_id','TRUTH.FN','QUERY.TOTAL','QUERY.FP','QUERY.UNK','METRIC.Precision','METRIC.Recall','METRIC.F1_Score']]
dat_transposed['QUERY.TP'] = dat_transposed['QUERY.TOTAL'].astype(int) - dat_transposed['QUERY.UNK'].astype(int) - dat_transposed['QUERY.FP'].astype(int)
dat_transposed['QUERY'] =dat_transposed['QUERY.TOTAL'].astype(int) - dat_transposed['QUERY.UNK'].astype(int)
indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]] indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]]
snv = dat_transposed[['SNP' in s for s in dat_transposed.index]] snv = dat_transposed[['SNP' in s for s in dat_transposed.index]]
indel.reset_index(drop=True, inplace=True) indel.reset_index(drop=True, inplace=True)
snv.reset_index(drop=True, inplace=True) snv.reset_index(drop=True, inplace=True)
benchmark = pd.concat([snv, indel], axis=1) benchmark = pd.concat([snv, indel], axis=1)
benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'METRIC.Precision', 'METRIC.Recall']]
benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']
benchmark = benchmark[['Sample','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']]
benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'QUERY','QUERY.TP','QUERY.FP','TRUTH.FN','METRIC.Precision', 'METRIC.Recall','METRIC.F1_Score']]
benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV query','INDEL query','SNV TP','INDEL TP','SNV FP','INDEL FP','SNV FN','INDEL FN','SNV precision','INDEL precision','SNV recall','INDEL recall','SNV F1','INDEL F1']
benchmark = benchmark[['Sample','SNV number','INDEL number','SNV query','INDEL query','SNV TP','INDEL TP','SNV FP','INDEL FP','SNV FN','INDEL FN','SNV precision','INDEL precision','SNV recall','INDEL recall','SNV F1','INDEL F1']]
benchmark['SNV precision'] = benchmark['SNV precision'].astype(float) benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float) benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
benchmark['SNV recall'] = benchmark['SNV recall'].astype(float) benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float) benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
benchmark['SNV F1'] = benchmark['SNV F1'].astype(float)
benchmark['INDEL F1'] = benchmark['INDEL F1'].astype(float)
benchmark['SNV precision'] = benchmark['SNV precision'] * 100 benchmark['SNV precision'] = benchmark['SNV precision'] * 100
benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100 benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100
benchmark['SNV recall'] = benchmark['SNV recall'] * 100 benchmark['SNV recall'] = benchmark['SNV recall'] * 100
benchmark['INDEL recall'] = benchmark['INDEL recall']* 100 benchmark['INDEL recall'] = benchmark['INDEL recall']* 100
benchmark['SNV F1'] = benchmark['SNV F1'] * 100
benchmark['INDEL F1'] = benchmark['INDEL F1'] * 100
benchmark = benchmark.round(2) benchmark = benchmark.round(2)
benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0) benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)
else: else:
dat =pd.DataFrame.from_records(happy) dat =pd.DataFrame.from_records(happy)
dat = dat.loc[:, dat.columns.str.endswith('ALL')] dat = dat.loc[:, dat.columns.str.endswith('ALL')]
dat_transposed = dat.T dat_transposed = dat.T
dat_transposed = dat_transposed.loc[:,['sample_id','QUERY.TOTAL','METRIC.Precision','METRIC.Recall']]
dat_transposed = dat_transposed.loc[:,['sample_id','TRUTH.FN','QUERY.TOTAL','QUERY.FP','QUERY.UNK','METRIC.Precision','METRIC.Recall','METRIC.F1_Score']]
dat_transposed['QUERY.TP'] = dat_transposed['QUERY.TOTAL'].astype(int) - dat_transposed['QUERY.UNK'].astype(int) - dat_transposed['QUERY.FP'].astype(int)
dat_transposed['QUERY'] =dat_transposed['QUERY.TOTAL'].astype(int) - dat_transposed['QUERY.UNK'].astype(int)
indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]] indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]]
snv = dat_transposed[['SNP' in s for s in dat_transposed.index]] snv = dat_transposed[['SNP' in s for s in dat_transposed.index]]
indel.reset_index(drop=True, inplace=True) indel.reset_index(drop=True, inplace=True)
snv.reset_index(drop=True, inplace=True) snv.reset_index(drop=True, inplace=True)
benchmark = pd.concat([snv, indel], axis=1) benchmark = pd.concat([snv, indel], axis=1)
benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'METRIC.Precision', 'METRIC.Recall']]
benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']
benchmark = benchmark[['Sample','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']]
benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'QUERY','QUERY.TP','QUERY.FP','TRUTH.FN','METRIC.Precision', 'METRIC.Recall','METRIC.F1_Score']]
benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV query','INDEL query','SNV TP','INDEL TP','SNV FP','INDEL FP','SNV FN','INDEL FN','SNV precision','INDEL precision','SNV recall','INDEL recall','SNV F1','INDEL F1']
benchmark = benchmark[['Sample','SNV number','INDEL number','SNV query','INDEL query','SNV TP','INDEL TP','SNV FP','INDEL FP','SNV FN','INDEL FN','SNV precision','INDEL precision','SNV recall','INDEL recall','SNV F1','INDEL F1']]
benchmark['SNV precision'] = benchmark['SNV precision'].astype(float) benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float) benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
benchmark['SNV recall'] = benchmark['SNV recall'].astype(float) benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float) benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
benchmark['SNV F1'] = benchmark['SNV F1'].astype(float)
benchmark['INDEL F1'] = benchmark['INDEL F1'].astype(float)
benchmark['SNV precision'] = benchmark['SNV precision'] * 100 benchmark['SNV precision'] = benchmark['SNV precision'] * 100
benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100 benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100
benchmark['SNV recall'] = benchmark['SNV recall'] * 100 benchmark['SNV recall'] = benchmark['SNV recall'] * 100
benchmark['INDEL recall'] = benchmark['INDEL recall']* 100 benchmark['INDEL recall'] = benchmark['INDEL recall']* 100
benchmark['SNV F1'] = benchmark['SNV F1'] * 100
benchmark['INDEL F1'] = benchmark['INDEL F1'] * 100
benchmark = benchmark.round(2) benchmark = benchmark.round(2)
benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0) benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)

+ 1
- 1
defaults Wyświetl plik

"db_mills": "Mills_and_1000G_gold_standard.indels.hg38.vcf", "db_mills": "Mills_and_1000G_gold_standard.indels.hg38.vcf",
"dbsnp": "dbsnp_146.hg38.vcf", "dbsnp": "dbsnp_146.hg38.vcf",
"MENDELIANdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/vbt:v1.1", "MENDELIANdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/vbt:v1.1",
"DIYdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.4",
"DIYdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:1.5",
"ref_dir": "oss://pgx-reference-data/GRCh38.d1.vd1/" "ref_dir": "oss://pgx-reference-data/GRCh38.d1.vd1/"
} }

Ładowanie…
Anuluj
Zapisz