@@ -1,66 +0,0 @@ | |||
import json | |||
import pandas as pd | |||
import sys, argparse, os | |||
parser = argparse.ArgumentParser(description="This script is to get information from multiqc") | |||
parser.add_argument('-fastqc_qualimap', '--fastqc_qualimap', type=str, help='multiqc_general_stats.txt', required=True) | |||
parser.add_argument('-fastqc', '--fastqc', type=str, help='multiqc_fastqc.txt', required=True) | |||
parser.add_argument('-fastqscreen', '--fastqscreen', type=str, help='multiqc_fastq_screen.txt', required=True) | |||
parser.add_argument('-hap', '--happy', type=str, help='multiqc_happy_data.json', required=True) | |||
args = parser.parse_args() | |||
# Rename input: | |||
fastqc_qualimap_file = args.fastqc_qualimap | |||
fastqc_file = args.fastqc | |||
fastqscreen_file = args.fastqscreen | |||
hap_file = args.happy | |||
# fastqc and qualimap | |||
dat = pd.read_table(fastqc_qualimap_file) | |||
fastqc = dat.loc[:, dat.columns.str.startswith('FastQC')] | |||
fastqc.insert(loc=0, column='Sample', value=dat['Sample']) | |||
fastqc_stat = fastqc.dropna() | |||
# qulimap | |||
qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')] | |||
qualimap.insert(loc=0, column='Sample', value=dat['Sample']) | |||
qualimap_stat = qualimap.dropna() | |||
# fastqc | |||
dat = pd.read_table(fastqc_file) | |||
fastqc_module = dat.loc[:, "per_base_sequence_quality":"kmer_content"] | |||
fastqc_module.insert(loc=0, column='Sample', value=dat['Sample']) | |||
fastqc_all = pd.merge(fastqc_stat,fastqc_module, how='outer', left_on=['Sample'], right_on = ['Sample']) | |||
# fastqscreen | |||
dat = pd.read_table(fastqscreen_file) | |||
fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')] | |||
dat['Sample'] = [i.replace('_screen','') for i in dat['Sample']] | |||
fastqscreen.insert(loc=0, column='Sample', value=dat['Sample']) | |||
# benchmark | |||
with open(hap_file) as hap_json: | |||
happy = json.load(hap_json) | |||
dat =pd.DataFrame.from_records(happy) | |||
dat = dat.loc[:, dat.columns.str.endswith('ALL')] | |||
dat_transposed = dat.T | |||
benchmark = dat_transposed.loc[:,['sample_id','METRIC.Precision','METRIC.Recall']] | |||
benchmark['sample_id'] = benchmark.index | |||
benchmark.columns = ['Sample','Precision','Recall'] | |||
#output | |||
fastqc_all.to_csv('fastqc.final.result.txt',sep="\t",index=0) | |||
fastqscreen.to_csv('fastqscreen.final.result.txt',sep="\t",index=0) | |||
qualimap_stat.to_csv('qualimap.final.result.txt',sep="\t",index=0) | |||
benchmark.to_csv('benchmark.final.result.txt',sep="\t",index=0) | |||
@@ -0,0 +1,101 @@ | |||
import json | |||
import pandas as pd | |||
import sys, argparse, os | |||
import statistics | |||
parser = argparse.ArgumentParser(description="This script is to summary information for pre-alignment QC") | |||
parser.add_argument('-general', '--general_stat', type=str, help='multiqc_general_stats.txt', required=True) | |||
parser.add_argument('-is', '--is_metrics', type=str, help='_is_metrics.txt', required=True) | |||
parser.add_argument('-wgsmetrics', '--WgsMetricsAlgo', type=str, help='deduped_WgsMetricsAlgo', required=True) | |||
parser.add_argument('-qualityyield', '--QualityYield', type=str, help='deduped_QualityYield', required=True) | |||
parser.add_argument('-aln', '--aln_metrics', type=str, help='aln_metrics.txt', required=True) | |||
args = parser.parse_args() | |||
general_file = args.general_stat | |||
is_file = args.is_metrics | |||
wgsmetrics_file = args.wgsmetrics | |||
qualityyield_file = args.qualityyield | |||
aln_file = args.aln_metrics | |||
##### Table | |||
## general stat: % GC | |||
dat = pd.read_table(general_file) | |||
qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')] | |||
qualimap.insert(loc=0, column='Sample', value=dat['Sample']) | |||
qualimap_stat = qualimap.dropna() | |||
part1 = fastqc_stat.loc[:,['Sample', 'FastQC_mqc-generalstats-fastqc-percent_duplicates','FastQC_mqc-generalstats-fastqc-total_sequences']] | |||
## is_metrics: median insert size | |||
## deduped_WgsMetricsAlgo: 1x, 5x, 10x, 30x, median coverage | |||
with open(html_file) as file: | |||
origDict = json.load(file) | |||
newdict = {(k1, k2):v2 for k1,v1 in origDict.items() \ | |||
for k2,v2 in origDict[k1].items()} | |||
df = pd.DataFrame([newdict[i] for i in sorted(newdict)], | |||
index=pd.MultiIndex.from_tuples([i for i in sorted(newdict.keys())])) | |||
gc = [] | |||
at = [] | |||
for i in part1['Sample']: | |||
sub_df = df.loc[i,:] | |||
gc.append(statistics.mean(sub_df['g']/sub_df['c'])) | |||
at.append(statistics.mean(sub_df['a']/sub_df['t'])) | |||
## fastq_screen | |||
dat = pd.read_table(fastqscreen_file) | |||
fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')] | |||
del fastqscreen['ERCC percentage'] | |||
del fastqscreen['Phix percentage'] | |||
### merge all information | |||
part1.insert(loc=3, column='G/C ratio', value=gc) | |||
part1.insert(loc=4, column='A/T ratio', value=at) | |||
part1.reset_index(drop=True, inplace=True) | |||
fastqscreen.reset_index(drop=True, inplace=True) | |||
df = pd.concat([part1, fastqscreen], axis=1) | |||
df = df.append(df.mean(axis=0),ignore_index=True) | |||
df = df.fillna('Batch average value') | |||
df.columns = ['Sample','Total sequences (million)','% Dup','G/C ratio','A/T ratio','% Human','% EColi','% Adapter' , '% Vector','% rRNA' , '% Virus','% Yeast' ,'% Mitoch' ,'% No hits'] | |||
df.to_csv('per-alignment_table_summary.txt',sep='\t',index=False) | |||
##### Picture | |||
## cumulative genome coverage | |||
with open(json_file) as file: | |||
all_dat = json.load(file) | |||
genome_coverage_json = all_dat['report_plot_data']['qualimap_genome_fraction']['datasets'][0] | |||
dat =pd.DataFrame.from_records(genome_coverage_json) | |||
genome_coverage = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) | |||
for i in range(dat.shape[0]): | |||
one_sample = pd.DataFrame(dat.loc[i,'data']) | |||
one_sample.index = one_sample[0] | |||
genome_coverage[dat.loc[i,'name']] = one_sample[1] | |||
genome_coverage = genome_coverage.transpose() | |||
genome_coverage['Sample'] = genome_coverage.index | |||
genome_coverage.to_csv('post-alignment_genome_coverage.txt',sep='\t',index=False) | |||
## insert size histogram | |||
insert_size_json = all_dat['report_plot_data']['qualimap_insert_size']['datasets'][0] | |||
dat =pd.DataFrame.from_records(insert_size_json) | |||
insert_size = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) | |||
for i in range(dat.shape[0]): | |||
one_sample = pd.DataFrame(dat.loc[i,'data']) | |||
one_sample.index = one_sample[0] | |||
insert_size[dat.loc[i,'name']] = one_sample[1] | |||
insert_size = insert_size.transpose() | |||
insert_size['Sample'] = insert_size.index | |||
insert_size.to_csv('post-alignment_insert_size.txt',sep='\t',index=False) | |||
## GC content distribution | |||
gc_content_json = all_dat['report_plot_data']['qualimap_gc_content']['datasets'][0] | |||
dat =pd.DataFrame.from_records(gc_content_json) | |||
gc_content = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) | |||
for i in range(dat.shape[0]): | |||
one_sample = pd.DataFrame(dat.loc[i,'data']) | |||
one_sample.index = one_sample[0] | |||
gc_content[dat.loc[i,'name']] = one_sample[1] | |||
gc_content = gc_content.transpose() | |||
gc_content['Sample'] = gc_content.index | |||
gc_content.to_csv('post-alignment_gc_content.txt',sep='\t',index=False) | |||
@@ -0,0 +1,132 @@ | |||
import json | |||
import pandas as pd | |||
import sys, argparse, os | |||
import statistics | |||
parser = argparse.ArgumentParser(description="This script is to summary information for pre-alignment QC") | |||
parser.add_argument('-general', '--general_stat', type=str, help='multiqc_general_stats.txt', required=True) | |||
parser.add_argument('-html', '--html', type=str, help='multiqc_report.html', required=True) | |||
parser.add_argument('-fastqscreen', '--fastqscreen', type=str, help='multiqc_fastq_screen.txt', required=True) | |||
parser.add_argument('-json', '--json', type=str, help='multiqc_happy_data.json', required=True) | |||
args = parser.parse_args() | |||
general_file = args.general_stat | |||
html_file = args.html | |||
fastqscreen_file = args.fastqscreen | |||
json_file = args.json | |||
##### Table | |||
## general stat: 1. Total sequences; 2. %Dup | |||
dat = pd.read_table(general_file) | |||
fastqc = dat.loc[:, dat.columns.str.startswith('FastQC')] | |||
fastqc.insert(loc=0, column='Sample', value=dat['Sample']) | |||
fastqc_stat = fastqc.dropna() | |||
part1 = fastqc_stat.loc[:,['Sample', 'FastQC_mqc-generalstats-fastqc-percent_duplicates','FastQC_mqc-generalstats-fastqc-total_sequences']] | |||
## report html: 1. G/C ratio; 2. A/T ratio | |||
## cat multiqc_report.html | grep 'fastqc_seq_content_data = ' | sed s'/fastqc_seq_content_data\ =\ //g' | sed 's/^[ \t]*//g' | sed s'/;//g' > fastqc_sequence_content.json | |||
with open(html_file) as file: | |||
origDict = json.load(file) | |||
newdict = {(k1, k2):v2 for k1,v1 in origDict.items() \ | |||
for k2,v2 in origDict[k1].items()} | |||
df = pd.DataFrame([newdict[i] for i in sorted(newdict)], | |||
index=pd.MultiIndex.from_tuples([i for i in sorted(newdict.keys())])) | |||
gc = [] | |||
at = [] | |||
for i in part1['Sample']: | |||
sub_df = df.loc[i,:] | |||
gc.append(statistics.mean(sub_df['g']/sub_df['c'])) | |||
at.append(statistics.mean(sub_df['a']/sub_df['t'])) | |||
## fastq_screen | |||
dat = pd.read_table(fastqscreen_file) | |||
fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')] | |||
del fastqscreen['ERCC percentage'] | |||
del fastqscreen['Phix percentage'] | |||
### merge all information | |||
part1.insert(loc=3, column='G/C ratio', value=gc) | |||
part1.insert(loc=4, column='A/T ratio', value=at) | |||
part1.reset_index(drop=True, inplace=True) | |||
fastqscreen.reset_index(drop=True, inplace=True) | |||
df = pd.concat([part1, fastqscreen], axis=1) | |||
df = df.append(df.mean(axis=0),ignore_index=True) | |||
df = df.fillna('Batch average value') | |||
df.columns = ['Sample','Total sequences (million)','% Dup','G/C ratio','A/T ratio','% Human','% EColi','% Adapter' , '% Vector','% rRNA' , '% Virus','% Yeast' ,'% Mitoch' ,'% No hits'] | |||
df.to_csv('per-alignment_table_summary.txt',sep='\t',index=False) | |||
##### Picture | |||
## mean quality scores | |||
with open(json_file) as file: | |||
all_dat = json.load(file) | |||
mean_quality_json = all_dat['report_plot_data']['fastqc_per_base_sequence_quality_plot']['datasets'][0] | |||
dat =pd.DataFrame.from_records(mean_quality_json) | |||
mean_quality = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) | |||
for i in range(dat.shape[0]): | |||
one_sample = pd.DataFrame(dat.loc[i,'data']) | |||
one_sample.index = one_sample[0] | |||
mean_quality[dat.loc[i,'name']] = one_sample[1] | |||
mean_quality = mean_quality.transpose() | |||
mean_quality['Sample'] = mean_quality.index | |||
mean_quality.to_csv('pre-alignment_mean_quality.txt',sep='\t',index=False) | |||
## per sequence GC content | |||
gc_content_json = all_dat['report_plot_data']['fastqc_per_sequence_gc_content_plot']['datasets'][0] | |||
dat =pd.DataFrame.from_records(gc_content_json) | |||
gc_content = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) | |||
for i in range(dat.shape[0]): | |||
one_sample = pd.DataFrame(dat.loc[i,'data']) | |||
one_sample.index = one_sample[0] | |||
gc_content[dat.loc[i,'name']] = one_sample[1] | |||
gc_content = gc_content.transpose() | |||
gc_content['Sample'] = gc_content.index | |||
gc_content.to_csv('pre-alignment_gc_content.txt',sep='\t',index=False) | |||
# fastqc and qualimap | |||
dat = pd.read_table(fastqc_qualimap_file) | |||
fastqc = dat.loc[:, dat.columns.str.startswith('FastQC')] | |||
fastqc.insert(loc=0, column='Sample', value=dat['Sample']) | |||
fastqc_stat = fastqc.dropna() | |||
# qulimap | |||
qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')] | |||
qualimap.insert(loc=0, column='Sample', value=dat['Sample']) | |||
qualimap_stat = qualimap.dropna() | |||
# fastqc | |||
dat = pd.read_table(fastqc_file) | |||
fastqc_module = dat.loc[:, "per_base_sequence_quality":"kmer_content"] | |||
fastqc_module.insert(loc=0, column='Sample', value=dat['Sample']) | |||
fastqc_all = pd.merge(fastqc_stat,fastqc_module, how='outer', left_on=['Sample'], right_on = ['Sample']) | |||
# fastqscreen | |||
dat = pd.read_table(fastqscreen_file) | |||
fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')] | |||
dat['Sample'] = [i.replace('_screen','') for i in dat['Sample']] | |||
fastqscreen.insert(loc=0, column='Sample', value=dat['Sample']) | |||
# benchmark | |||
with open(hap_file) as hap_json: | |||
happy = json.load(hap_json) | |||
dat =pd.DataFrame.from_records(happy) | |||
dat = dat.loc[:, dat.columns.str.endswith('ALL')] | |||
dat_transposed = dat.T | |||
benchmark = dat_transposed.loc[:,['sample_id','METRIC.Precision','METRIC.Recall']] | |||
benchmark['sample_id'] = benchmark.index | |||
benchmark.columns = ['Sample','Precision','Recall'] | |||
#output | |||
fastqc_all.to_csv('fastqc.final.result.txt',sep="\t",index=0) | |||
fastqscreen.to_csv('fastqscreen.final.result.txt',sep="\t",index=0) | |||
qualimap_stat.to_csv('qualimap.final.result.txt',sep="\t",index=0) | |||
benchmark.to_csv('benchmark.final.result.txt',sep="\t",index=0) | |||
@@ -1,5 +1,6 @@ | |||
task Metrics { | |||
File ref_dir | |||
String SENTIEON_INSTALL_DIR | |||
String sample | |||
@@ -10,6 +11,8 @@ task Metrics { | |||
File sorted_bam | |||
File sorted_bam_index | |||
String disk_size | |||
command <<< | |||
set -o pipefail |
@@ -34,13 +34,13 @@ task benchmark { | |||
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg index -f vcf ${sample}.rtg.vcf.gz | |||
if [[ ${sample} =~ "LCL5" ]];then | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL5.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL5.high.confidence.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL5.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL5.high.confidence.bed.gz --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
elif [[ ${sample} =~ "LCL6" ]]; then | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL6.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL6.high.confidence.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL6.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL6.high.confidence.bed.gz --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
elif [[ ${sample} =~ "LCL7" ]]; then | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL7.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL7.high.confidence.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL7.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL7.high.confidence.bed.gz --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
elif [[ ${sample} =~ "LCL8" ]]; then | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL8.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL8.high.confidence.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
/opt/hap.py/bin/hap.py ${benchmarking_dir}/LCL8.afterfilterdiffbed.vcf.gz ${sample}.rtg.vcf.gz -f ${benchmarking_dir}/LCL8.high.confidence.bed.gz --threads $nt -o ${sample} -r ${ref_dir}/${fasta} | |||
else | |||
echo "only for quartet samples" | |||
fi |
@@ -17,7 +17,7 @@ task deduped_Metrics { | |||
set -e | |||
export SENTIEON_LICENSE=192.168.0.55:8990 | |||
nt=$(nproc) | |||
${SENTIEON_INSTALL_DIR}/bin/sentieon driver -r ${ref_dir}/${fasta} -t $nt -i ${Dedup_bam} --algo CoverageMetrics --omit_base_output ${sample}_deduped_coverage_metrics --algo MeanQualityByCycle ${sample}_deduped_mq_metrics.txt --algo QualDistribution ${sample}_deduped_qd_metrics.txt --algo GCBias --summary ${sample}_deduped_gc_summary.txt ${sample}_deduped_gc_metrics.txt --algo AlignmentStat ${sample}_deduped_aln_metrics.txt --algo InsertSizeMetricAlgo ${sample}_deduped_is_metrics.txt | |||
${SENTIEON_INSTALL_DIR}/bin/sentieon driver -r ${ref_dir}/${fasta} -t $nt -i ${Dedup_bam} --algo CoverageMetrics --omit_base_output ${sample}_deduped_coverage_metrics --algo MeanQualityByCycle ${sample}_deduped_mq_metrics.txt --algo QualDistribution ${sample}_deduped_qd_metrics.txt --algo GCBias --summary ${sample}_deduped_gc_summary.txt ${sample}_deduped_gc_metrics.txt --algo AlignmentStat ${sample}_deduped_aln_metrics.txt --algo InsertSizeMetricAlgo ${sample}_deduped_is_metrics.txt --algo QualityYield ${sample}_deduped_QualityYield.txt --algo WgsMetricsAlgo ${sample}_deduped_WgsMetricsAlgo.txt | |||
>>> | |||
runtime { | |||
@@ -33,5 +33,13 @@ task deduped_Metrics { | |||
File deduped_coverage_metrics_sample_interval_statistics = "${sample}_deduped_coverage_metrics.sample_interval_statistics" | |||
File deduped_coverage_metrics_sample_cumulative_coverage_proportions = "${sample}_deduped_coverage_metrics.sample_cumulative_coverage_proportions" | |||
File deduped_coverage_metrics_sample_cumulative_coverage_counts = "${sample}_deduped_coverage_metrics.sample_cumulative_coverage_counts" | |||
File deduped_mean_quality = "${sample}_deduped_mq_metrics.txt" | |||
File deduped_qd_metrics = "${sample}_deduped_qd_metrics.txt" | |||
File deduped_gc_summary = "${sample}_deduped_gc_summary.txt" | |||
File deduped_gc_metrics = "${sample}_deduped_gc_metrics.txt" | |||
File dedeuped_aln_metrics = "${sample}_deduped_aln_metrics.txt" | |||
File deduped_is_metrics = "${sample}_deduped_is_metrics.txt" | |||
File deduped_QualityYield = "${sample}_deduped_QualityYield.txt" | |||
File deduped_wgsmetrics = "${sample}_deduped_WgsMetricsAlgo.txt" | |||
} | |||
} |
@@ -1,6 +1,5 @@ | |||
task extract_multiqc { | |||
task extract_tables { | |||
File fastqc_qualimap | |||
File fastqc | |||
File fastqscreen | |||
File hap |
@@ -2,14 +2,14 @@ task mergeSentieon { | |||
Array[File] aln_metrics_header | |||
Array[File] aln_metrics_data | |||
Array[File] dedup_metrics_header | |||
Array[File] dedup_metrics_data | |||
Array[File] is_metrics_header | |||
Array[File] is_metrics_data | |||
Array[File] deduped_coverage_header | |||
Array[File] deduped_coverage_data | |||
Array[File] quality_yield_header | |||
Array[File] quality_yield_data | |||
Array[File] wgs_metrics_header | |||
Array[File] wgs_metrics_data | |||
String docker | |||
String cluster_config | |||
@@ -18,10 +18,13 @@ task mergeSentieon { | |||
command <<< | |||
set -o pipefail | |||
set -e | |||
cat ${sep=" " aln_metrics_header} | sed -n '1,1p' | cat - ${sep=" " aln_metrics_data} > aln_metrics.txt | |||
cat ${sep=" " dedup_metrics_header} | sed -n '1,1p' | cat - ${sep=" " dedup_metrics_data} > dedup_metrics.txt | |||
echo '''Sample''' > sample_column | |||
cat ${sep=" " aln_metrics_header} | sed -n '1,1p' | cat - ${sep=" " aln_metrics_data} > aln_metrics | |||
ls ${sep=" " aln_metrics_data} | cut -d '.' -f1 | cat sample_column - | paste - aln_metrics > aln_metrics.txt | |||
cat ${sep=" " is_metrics_header} | sed -n '1,1p' | cat - ${sep=" " is_metrics_data} > is_metrics.txt | |||
cat ${sep=" " deduped_coverage_header} | sed -n '1,1p' | cat - ${sep=" " deduped_coverage_data} > deduped_coverage.txt | |||
cat ${sep=" " quality_yield_header} | sed -n '1,1p' | cat - ${sep=" " quality_yield_data} > quality_yield_data.txt | |||
cat ${sep=" " wgs_metrics_header} | sed -n '1,1p' | cat - ${sep=" " wgs_metrics_data} > wgs_metrics_data.txt | |||
>>> | |||
runtime { | |||
@@ -33,8 +36,8 @@ task mergeSentieon { | |||
output { | |||
File aln_metrics_merge = "aln_metrics.txt" | |||
File dedup_metrics_merge = "dedup_metrics.txt" | |||
File is_metrics_merge = "is_metrics.txt" | |||
File deduped_coverage_merge = "deduped_coverage.txt" | |||
File quality_yield_merge = "quality_yield_data.txt" | |||
File wgs_metrics_merge = "wgs_metrics_data.txt" | |||
} | |||
} |
@@ -32,7 +32,6 @@ task multiqc { | |||
multiqc /cromwell_root/tmp/ | |||
cat multiqc_data/multiqc_general_stats.txt > multiqc_general_stats.txt | |||
cat multiqc_data/multiqc_fastqc.txt > multiqc_fastqc.txt | |||
cat multiqc_data/multiqc_fastq_screen.txt > multiqc_fastq_screen.txt | |||
cat multiqc_data/multiqc_happy_data.json > multiqc_happy_data.json | |||
@@ -48,8 +47,7 @@ task multiqc { | |||
output { | |||
File multiqc_html = "multiqc_report.html" | |||
Array[File] multiqc_txt = glob("multiqc_data/*") | |||
File fastqc_qualimap = "multiqc_general_stats.txt" | |||
File fastqc = "multiqc_fastqc.txt" | |||
File fastqc = "multiqc_general_stats.txt" | |||
File fastqscreen = "multiqc_fastq_screen.txt" | |||
File hap = "multiqc_happy_data.json" | |||
} |
@@ -1,9 +1,8 @@ | |||
task sentieon { | |||
File aln_metrics | |||
File dedup_metrics | |||
File is_metrics | |||
File deduped_coverage | |||
String sample_name | |||
File wgsmetrics | |||
File quality_yield | |||
String docker | |||
String cluster_config | |||
String disk_size |
@@ -1,5 +1,4 @@ | |||
import "./tasks/mapping.wdl" as mapping | |||
import "./tasks/Metrics.wdl" as Metrics | |||
import "./tasks/Dedup.wdl" as Dedup | |||
import "./tasks/deduped_Metrics.wdl" as deduped_Metrics | |||
import "./tasks/Realigner.wdl" as Realigner | |||
@@ -14,8 +13,7 @@ import "./tasks/merge_mendelian.wdl" as merge_mendelian | |||
import "./tasks/quartet_mendelian.wdl" as quartet_mendelian | |||
import "./tasks/fastqc.wdl" as fastqc | |||
import "./tasks/fastqscreen.wdl" as fastqscreen | |||
import "./tasks/qualimap.wdl" as qualimap | |||
import "./tasks/extract_multiqc.wdl" as extract_multiqc | |||
import "./tasks/extract_tables.wdl" as extract_tables | |||
import "./tasks/D5_D6.wdl" as D5_D6 | |||
import "./tasks/merge_family.wdl" as merge_family | |||
@@ -89,19 +87,6 @@ workflow {{ project_name }} { | |||
disk_size=disk_size | |||
} | |||
call Metrics.Metrics as Metrics { | |||
input: | |||
SENTIEON_INSTALL_DIR=SENTIEON_INSTALL_DIR, | |||
fasta=fasta, | |||
ref_dir=ref_dir, | |||
sorted_bam=mapping.sorted_bam, | |||
sorted_bam_index=mapping.sorted_bam_index, | |||
sample=quartet[2], | |||
docker=SENTIEONdocker, | |||
disk_size=disk_size, | |||
cluster_config=BIGcluster_config | |||
} | |||
call Dedup.Dedup as Dedup { | |||
input: | |||
SENTIEON_INSTALL_DIR=SENTIEON_INSTALL_DIR, | |||
@@ -113,15 +98,6 @@ workflow {{ project_name }} { | |||
cluster_config=BIGcluster_config | |||
} | |||
call qualimap.qualimap as qualimap { | |||
input: | |||
bam=Dedup.Dedup_bam, | |||
bai=Dedup.Dedup_bam_index, | |||
docker=QUALIMAPdocker, | |||
cluster_config=BIGcluster_config, | |||
disk_size=disk_size | |||
} | |||
call deduped_Metrics.deduped_Metrics as deduped_Metrics { | |||
input: | |||
SENTIEON_INSTALL_DIR=SENTIEON_INSTALL_DIR, | |||
@@ -165,6 +141,7 @@ workflow {{ project_name }} { | |||
disk_size=disk_size, | |||
cluster_config=BIGcluster_config | |||
} | |||
call Haplotyper_gVCF.Haplotyper_gVCF as Haplotyper_gVCF { | |||
input: | |||
SENTIEON_INSTALL_DIR=SENTIEON_INSTALL_DIR, | |||
@@ -224,19 +201,20 @@ workflow {{ project_name }} { | |||
read2_zip=fastqc.read2_zip, | |||
txt1=fastqscreen.txt1, | |||
txt2=fastqscreen.txt2, | |||
zip=qualimap.zip, | |||
summary=benchmark.summary, | |||
docker=MULTIQCdocker, | |||
cluster_config=SMALLcluster_config, | |||
disk_size=disk_size | |||
} | |||
call extract_multiqc.extract_multiqc as extract_multiqc { | |||
call extract_tables.extract_tables as extract_tables { | |||
input: | |||
fastqc_qualimap=multiqc.fastqc_qualimap, | |||
fastqc=multiqc.fastqc, | |||
fastqscreen=multiqc.fastqscreen, | |||
hap=multiqc.hap, | |||
aln=deduped_Metrics.dedeuped_aln_metrics, | |||
quality_yield=deduped_Metrics.deduped_QualityYield, | |||
wgs_metrics=deduped_Metrics.deduped_wgsmetrics, | |||
docker=DIYdocker, | |||
cluster_config=SMALLcluster_config, | |||
disk_size=disk_size |