|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- import json
- import pandas as pd
- import sys, argparse, os
-
- parser = argparse.ArgumentParser(description="This script is to get information from multiqc and sentieon, output the raw fastq, bam and variants calling (precision and recall) quality metrics")
-
-
- parser.add_argument('-quality', '--quality_yield', type=str, help='*.quality_yield.txt', required=True)
- parser.add_argument('-depth', '--wgs_metrics', type=str, help='*deduped_WgsMetricsAlgo.txt', required=True)
- parser.add_argument('-aln', '--aln_metrics', type=str, help='*_deduped_aln_metrics.txt', required=True)
- parser.add_argument('-is', '--is_metrics', type=str, help='*_deduped_is_metrics.txt', required=True)
-
- parser.add_argument('-fastqc', '--fastqc', type=str, help='multiqc_fastqc.txt', required=True)
- parser.add_argument('-fastqscreen', '--fastqscreen', type=str, help='multiqc_fastq_screen.txt', required=True)
- parser.add_argument('-hap', '--happy', type=str, help='multiqc_happy_data.json', required=True)
-
- args = parser.parse_args()
-
- # Rename input:
- quality_yield_file = args.quality_yield
- wgs_metrics_file = args.wgs_metrics
- aln_metrics_file = args.aln_metrics
- is_metrics_file = args.is_metrics
-
- fastqc_file = args.fastqc
- fastqscreen_file = args.fastqscreen
- hap_file = args.happy
-
- #############################################
- # fastqc
- fastqc = pd.read_table(fastqc_file)
-
- #fastqc = dat.loc[:, dat.columns.str.startswith('FastQC')]
- #fastqc.insert(loc=0, column='Sample', value=dat['Sample'])
- #fastqc_stat = fastqc.dropna()
-
- # qulimap
- #qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')]
- #qualimap.insert(loc=0, column='Sample', value=dat['Sample'])
- #qualimap_stat = qualimap.dropna()
-
- # fastqc
- #dat = pd.read_table(fastqc_file)
-
- #fastqc_module = dat.loc[:, "per_base_sequence_quality":"kmer_content"]
- #fastqc_module.insert(loc=0, column='Sample', value=dat['Sample'])
- #fastqc_all = pd.merge(fastqc_stat,fastqc_module, how='outer', left_on=['Sample'], right_on = ['Sample'])
-
- # fastqscreen
- dat = pd.read_table(fastqscreen_file)
- fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')]
- dat['Sample'] = [i.replace('_screen','') for i in dat['Sample']]
- fastqscreen.insert(loc=0, column='Sample', value=dat['Sample'])
-
- # pre-alignment
- pre_alignment_dat = pd.merge(fastqc,fastqscreen,how="outer",left_on=['Sample'],right_on=['Sample'])
- pre_alignment_dat['FastQC_mqc-generalstats-fastqc-total_sequences'] = pre_alignment_dat['FastQC_mqc-generalstats-fastqc-total_sequences']/1000000
- del pre_alignment_dat['FastQC_mqc-generalstats-fastqc-percent_fails']
- del pre_alignment_dat['FastQC_mqc-generalstats-fastqc-avg_sequence_length']
- del pre_alignment_dat['ERCC percentage']
- del pre_alignment_dat['Phix percentage']
- del pre_alignment_dat['Mouse percentage']
- pre_alignment_dat = pre_alignment_dat.round(2)
- pre_alignment_dat.columns = ['Sample','%Dup','%GC','Total Sequences (million)','%Human','%EColi','%Adapter','%Vector','%rRNA','%Virus','%Yeast','%Mitoch','%No hits']
- pre_alignment_dat.to_csv('pre_alignment.txt',sep="\t",index=0)
-
-
-
- ############################
- dat = pd.read_table(aln_metrics_file)
- dat['PCT_ALIGNED_READS'] = dat["PF_READS_ALIGNED"]/dat["TOTAL_READS"]
- aln_metrics = dat[["Sample", "PCT_ALIGNED_READS","PF_MISMATCH_RATE"]]
- aln_metrics = aln_metrics * 100
-
- dat = pd.read_table(is_metrics_file)
- is_metrics = dat[['Sample', 'MEDIAN_INSERT_SIZE']]
-
- dat = pd.read_table(quality_yield_file)
- dat['%Q20'] = dat['Q20_BASES']/dat['TOTAL_BASES']
- dat['%Q30'] = dat['Q30_BASES']/dat['TOTAL_BASES']
- quality_yield = dat[['Sample','%Q20','%Q30']]
- quality_yield = quality_yield * 100
-
- dat = pd.read_table(wgs_metrics_file)
- wgs_metrics = dat[['Sample','MEDIAN_COVERAGE','PCT_1X', 'PCT_5X', 'PCT_10X','PCT_30X']]
- wgs_metrics['PCT_1X'] = wgs_metrics['PCT_1X'] * 100
- wgs_metrics['PCT_5X'] = wgs_metrics['PCT_5X'] * 100
- wgs_metrics['PCT_10X'] = wgs_metrics['PCT_10X'] * 100
- wgs_metrics['PCT_30X'] = wgs_metrics['PCT_30X'] * 100
-
- data_frames = [aln_metrics, is_metrics, quality_yield, wgs_metrics]
- post_alignment_dat = reduce(lambda left,right: pd.merge(left,right,on=['Sample'],how='outer'), data_frames)
-
- # benchmark
- with open(hap_file) as hap_json:
- happy = json.load(hap_json)
- dat =pd.DataFrame.from_records(happy)
- dat = dat.loc[:, dat.columns.str.endswith('ALL')]
- dat_transposed = dat.T
- benchmark = dat_transposed.loc[:,['sample_id','METRIC.Precision','METRIC.Recall']]
- benchmark.columns = ['Sample','Precision','Recall']
-
- #output
- fastqc_all.to_csv('fastqc.final.result.txt',sep="\t",index=0)
- fastqscreen.to_csv('fastqscreen.final.result.txt',sep="\t",index=0)
- qualimap_stat.to_csv('qualimap.final.result.txt',sep="\t",index=0)
- benchmark.to_csv('benchmark.final.result.txt',sep="\t",index=0)
-
-
-
-
-
-
|