Ver código fonte

first commit

master
LUYAO REN 4 anos atrás
commit
ee499eea5f
35 arquivos alterados com 2905 adições e 0 exclusões
  1. BIN
      codescripts/.DS_Store
  2. +60
    -0
      codescripts/D5_D6.py
  3. +37
    -0
      codescripts/Indel_bed.py
  4. +72
    -0
      codescripts/bed_region.py
  5. +67
    -0
      codescripts/cluster.sh
  6. +23
    -0
      codescripts/contig.txt
  7. +65
    -0
      codescripts/extract_multiqc.py
  8. +92
    -0
      codescripts/extract_vcf_information.py
  9. +47
    -0
      codescripts/filter_indel_over_50_cluster.py
  10. +43
    -0
      codescripts/filter_indel_over_50_mendelian.py
  11. +36
    -0
      codescripts/get_filtered_benchmark_vcfinfo.py
  12. +50
    -0
      codescripts/hap_summary.py
  13. +416
    -0
      codescripts/high_confidence_call_vote.py
  14. +42
    -0
      codescripts/high_voted_mendelian_bed.py
  15. +50
    -0
      codescripts/how_many_samples.py
  16. +42
    -0
      codescripts/lcl5_all_called_variants.py
  17. +6
    -0
      codescripts/linux_command.sh
  18. +129
    -0
      codescripts/merge_mendelian_vcfinfo.py
  19. +71
    -0
      codescripts/merge_two_family.py
  20. +115
    -0
      codescripts/merge_two_family_with_genotype.py
  21. +109
    -0
      codescripts/oneClass.py
  22. +25
    -0
      codescripts/precision_recall
  23. +144
    -0
      codescripts/reformVCF.py
  24. +227
    -0
      codescripts/replicates_consensus.py
  25. +13
    -0
      codescripts/variants.calling.qc.txt
  26. +36
    -0
      codescripts/vcf2bed.py
  27. +295
    -0
      codescripts/voted_by_vcfinfo_mendelianinfo.py
  28. +24
    -0
      inputs
  29. BIN
      tasks/.DS_Store
  30. +81
    -0
      tasks/benchmark.wdl
  31. +46
    -0
      tasks/mendelian.wdl
  32. +35
    -0
      tasks/merge_family.wdl
  33. +35
    -0
      tasks/merge_mendelian.wdl
  34. +62
    -0
      tasks/quartet_mendelian.wdl
  35. +310
    -0
      workflow.wdl

BIN
codescripts/.DS_Store Ver arquivo


+ 60
- 0
codescripts/D5_D6.py Ver arquivo

@@ -0,0 +1,60 @@
from __future__ import division
import pandas as pd
import sys, argparse, os


# input arguments
parser = argparse.ArgumentParser(description="this script is to calculate reproducibility between Quartet_D5 and Quartet_D6s")

parser.add_argument('-sister', '--sister', type=str, help='sister.txt', required=True)
parser.add_argument('-project', '--project', type=str, help='project name', required=True)


args = parser.parse_args()
sister_file = args.sister
project_name = args.project

# output file
output_name = project_name + '.sister.reproducibility.txt'

output_file = open(output_name,'w')

# input files
sister_dat = pd.read_table(sister_file)

sister_same = 0
sister_diff = 0

for row in sister_dat.itertuples():
# sister
if row[5] == row[6]:
if row[5] == './.':
mendelian = 'noInfo'
sister_count = "no"
elif row[5] == '0/0':
mendelian = 'Ref'
sister_count = "no"
else:
mendelian = '1'
sister_count = "yes_same"
else:
mendelian = '0'
if (row[5] == './.' or row[5] == '0/0') and (row[6] == './.' or row[6] == '0/0'):
sister_count = "no"
else:
sister_count = "yes_diff"
if sister_count == 'yes_same':
sister_same += 1
elif sister_count == 'yes_diff':
sister_diff += 1
else:
pass

sister = sister_same/(sister_same + sister_diff)
outcolumn = 'Project\tReproducibility_D5_D6\n'
outResult = project_name + '\t' + str(sister) + '\n'
output_file.write(outcolumn)
output_file.write(outResult)




+ 37
- 0
codescripts/Indel_bed.py Ver arquivo

@@ -0,0 +1,37 @@
import pandas as pd
import sys, argparse, os
mut = pd.read_table('/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/MIE/vcf/mutation_type',header=None)
outIndel = open(sys.argv[1],'w')
for row in mut.itertuples():
if ',' in row._4:
alt_seq = row._4.split(',')
alt_len = [len(i) for i in alt_seq]
alt = max(alt_len)
else:
alt = len(row._4)
ref = row._3
pos = row._2
if len(ref) == 1 and alt == 1:
pass
elif len(ref) > alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif alt > len(ref):
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif len(ref) == alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)








+ 72
- 0
codescripts/bed_region.py Ver arquivo

@@ -0,0 +1,72 @@
import pandas as pd
import sys, argparse, os
mut = mut = pd.read_table('/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/vcf/mutation_type',header=None)
vote = pd.read_table('/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/all_info/benchmark.vote.mendelian.txt',header=None)
merged_df = pd.merge(vote, mut, how='inner', left_on=[0,1], right_on = [0,1])
outFile = open(sys.argv[1],'w')
outIndel = open(sys.argv[2],'w')
for row in merged_df.itertuples():
#d5
if ',' in row._7:
d5 = row._7.split(',')
d5_len = [len(i) for i in d5]
d5_alt = max(d5_len)
else:
d5_alt = len(row._7)
#d6
if ',' in row._15:
d6 = row._15.split(',')
d6_len = [len(i) for i in d6]
d6_alt = max(d6_len)
else:
d6_alt = len(row._15)
#f7
if ',' in row._23:
f7 = row._23.split(',')
f7_len = [len(i) for i in f7]
f7_alt = max(f7_len)
else:
f7_alt = len(row._23)
#m8
if ',' in row._31:
m8 = row._31.split(',')
m8_len = [len(i) for i in m8]
m8_alt = max(m8_len)
else:
m8_alt = len(row._31)
all_length = [d5_alt,d6_alt,f7_alt,m8_alt]
alt = max(all_length)
ref = row._35
pos = int(row._2)
if len(ref) == 1 and alt == 1:
StartPos = int(pos) -1
EndPos = int(pos)
cate = 'SNV'
elif len(ref) > alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
cate = 'INDEL'
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif alt > len(ref):
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif len(ref) == alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
outline = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\t' + str(row._2) + '\t' + cate + '\n'
outFile.write(outline)









+ 67
- 0
codescripts/cluster.sh Ver arquivo

@@ -0,0 +1,67 @@
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$7"\t.\t.\t.\tGT\t"$6}' | grep -v '0/0' > LCL5.body
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$15"\t.\t.\t.\tGT\t"$14}' | grep -v '0/0' > LCL6.body
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$23"\t.\t.\t.\tGT\t"$22}' | grep -v '0/0'> LCL7.body
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$31"\t.\t.\t.\tGT\t"$30}'| grep -v '0/0' > LCL8.body
cat header5 LCL5.body > LCL5.beforediffbed.vcf
cat header6 LCL6.body > LCL6.beforediffbed.vcf
cat header7 LCL7.body > LCL7.beforediffbed.vcf
cat header8 LCL8.body > LCL8.beforediffbed.vcf
rtg bgzip *beforediffbed.vcf
rtg index *beforediffbed.vcf.gz

rtg vcffilter -i LCL5.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL5.afterfilterdiffbed.vcf.gz
rtg vcffilter -i LCL6.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL6.afterfilterdiffbed.vcf.gz
rtg vcffilter -i LCL7.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL7.afterfilterdiffbed.vcf.gz
rtg vcffilter -i LCL8.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL8.afterfilterdiffbed.vcf.gz

/mnt/pgx_src_data_pool_4/home/renluyao/softwares/annovar/table_annovar.pl LCL5.beforediffbed.vcf.gz /mnt/pgx_src_data_pool_4/home/renluyao/softwares/annovar/humandb \
-buildver hg38 \
-out LCL5 \
-remove \
-protocol 1000g2015aug_all,1000g2015aug_afr,1000g2015aug_amr,1000g2015aug_eas,1000g2015aug_eur,1000g2015aug_sas,clinvar_20190305,gnomad211_genome \
-operation f,f,f,f,f,f,f,f \
-nastring . \
-vcfinput \
--thread 8

rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL5.afterfilterdiffbed.vcf.gz -o LCL5_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/
rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL6.afterfilterdiffbed.vcf.gz -o LCL6_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/
rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL7.afterfilterdiffbed.vcf.gz -o LCL7_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/
rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL8.afterfilterdiffbed.vcf.gz -o LCL8_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/


zcat LCL5.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l
zcat LCL6.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l
zcat LCL7.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l
zcat LCL8.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l


zcat LCL5.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l
zcat LCL6.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l
zcat LCL7.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l
zcat LCL8.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l


zcat LCL5.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l
zcat LCL6.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l
zcat LCL7.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l
zcat LCL8.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l

bedtools subtract -a LCL5.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL5.27.homo_ref.consensus.filtereddiffbed.bed
bedtools subtract -a LCL6.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL6.27.homo_ref.consensus.filtereddiffbed.bed
bedtools subtract -a LCL7.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL7.27.homo_ref.consensus.filtereddiffbed.bed
bedtools subtract -a LCL8.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL8.27.homo_ref.consensus.filtereddiffbed.bed


python vcf2bed.py LCL5.body LCL5.variants.bed
python vcf2bed.py LCL6.body LCL6.variants.bed
python vcf2bed.py LCL7.body LCL7.variants.bed
python vcf2bed.py LCL8.body LCL8.variants.bed



cat /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/all_info/LCL5.variants.bed | cut -f1,11,12 | cat - LCL5.27.homo_ref.consensus.filtereddiffbed.bed | sort -k1,1 -k2,2n > LCL5.high.confidence.bed





+ 23
- 0
codescripts/contig.txt Ver arquivo

@@ -0,0 +1,23 @@
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>

+ 65
- 0
codescripts/extract_multiqc.py Ver arquivo

@@ -0,0 +1,65 @@
import json
import pandas as pd
import sys, argparse, os

parser = argparse.ArgumentParser(description="This script is to get information from multiqc")

parser.add_argument('-fastqc_qualimap', '--fastqc_qualimap', type=str, help='multiqc_general_stats.txt', required=True)
parser.add_argument('-fastqc', '--fastqc', type=str, help='multiqc_fastqc.txt', required=True)
parser.add_argument('-fastqscreen', '--fastqscreen', type=str, help='multiqc_fastq_screen.txt', required=True)
parser.add_argument('-hap', '--happy', type=str, help='multiqc_happy_data.json', required=True)

args = parser.parse_args()

# Rename input:
fastqc_qualimap_file = args.fastqc_qualimap
fastqc_file = args.fastqc
fastqscreen_file = args.fastqscreen
hap_file = args.happy


# fastqc and qualimap
dat = pd.read_table(fastqc_qualimap_file)

fastqc = dat.loc[:, dat.columns.str.startswith('FastQC')]
fastqc.insert(loc=0, column='Sample', value=dat['Sample'])
fastqc_stat = fastqc.dropna()

# qulimap
qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')]
qualimap.insert(loc=0, column='Sample', value=dat['Sample'])
qualimap_stat = qualimap.dropna()

# fastqc
dat = pd.read_table(fastqc_file)

fastqc_module = dat.loc[:, "per_base_sequence_quality":"kmer_content"]
fastqc_module.insert(loc=0, column='Sample', value=dat['Sample'])
fastqc_all = pd.merge(fastqc_stat,fastqc_module, how='outer', left_on=['Sample'], right_on = ['Sample'])

# fastqscreen
dat = pd.read_table(fastqscreen_file)
fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')]
dat['Sample'] = [i.replace('_screen','') for i in dat['Sample']]
fastqscreen.insert(loc=0, column='Sample', value=dat['Sample'])

# benchmark
with open(hap_file) as hap_json:
happy = json.load(hap_json)
dat =pd.DataFrame.from_records(happy)
dat = dat.loc[:, dat.columns.str.endswith('ALL')]
dat_transposed = dat.T
benchmark = dat_transposed.loc[:,['sample_id','METRIC.Precision','METRIC.Recall']]
benchmark.columns = ['Sample','Precision','Recall']

#output
fastqc_all.to_csv('fastqc.final.result.txt',sep="\t",index=0)
fastqscreen.to_csv('fastqscreen.final.result.txt',sep="\t",index=0)
qualimap_stat.to_csv('qualimap.final.result.txt',sep="\t",index=0)
benchmark.to_csv('benchmark.final.result.txt',sep="\t",index=0)







+ 92
- 0
codescripts/extract_vcf_information.py Ver arquivo

@@ -0,0 +1,92 @@
import sys,getopt
import os
import re
import fileinput
import pandas as pd

def usage():
print(
"""
Usage: python extract_vcf_information.py -i input_merged_vcf_file -o parsed_file

This script will extract SNVs and Indels information from the vcf files and output a tab-delimited files.

Input:
-i the selected vcf file

Output:
-o tab-delimited parsed file
""")

# select supported small variants
def process(oneLine):
line = oneLine.rstrip()
strings = line.strip().split('\t')
infoParsed = parse_INFO(strings[7])
formatKeys = strings[8].split(':')
formatValues = strings[9].split(':')
for i in range(0,len(formatKeys) -1) :
if formatKeys[i] == 'AD':
ra = formatValues[i].split(',')
infoParsed['RefDP'] = ra[0]
infoParsed['AltDP'] = ra[1]
if (int(ra[1]) + int(ra[0])) != 0:
infoParsed['af'] = float(int(ra[1])/(int(ra[1]) + int(ra[0])))
else:
pass
else:
infoParsed[formatKeys[i]] = formatValues[i]
infoParsed['chromo'] = strings[0]
infoParsed['pos'] = strings[1]
infoParsed['id'] = strings[2]
infoParsed['ref'] = strings[3]
infoParsed['alt'] = strings[4]
infoParsed['qual'] = strings[5]
return infoParsed


def parse_INFO(info):
strings = info.strip().split(';')
keys = []
values = []
for i in strings:
kv = i.split('=')
if kv[0] == 'DB':
keys.append('DB')
values.append('1')
elif kv[0] == 'AF':
pass
else:
keys.append(kv[0])
values.append(kv[1])
infoDict = dict(zip(keys, values))
return infoDict

opts,args = getopt.getopt(sys.argv[1:],"hi:o:")
for op,value in opts:
if op == "-i":
inputFile=value
elif op == "-o":
outputFile=value
elif op == "-h":
usage()
sys.exit()

if len(sys.argv[1:]) < 3:
usage()
sys.exit()

allDict = []
for line in fileinput.input(inputFile):
m = re.match('^\#',line)
if m is not None:
pass
else:
oneDict = process(line)
allDict.append(oneDict)

allTable = pd.DataFrame(allDict)

allTable.to_csv(outputFile,sep='\t',index=False)


+ 47
- 0
codescripts/filter_indel_over_50_cluster.py Ver arquivo

@@ -0,0 +1,47 @@
import sys,getopt
from itertools import islice

over_50_outfile = open("indel_lenth_over_50.txt",'w')
less_50_outfile = open("benchmark.men.vote.diffbed.lengthlessthan50.txt","w")

def process(line):
strings = line.strip().split('\t')
#d5
if ',' in strings[6]:
d5 = strings[6].split(',')
d5_len = [len(i) for i in d5]
d5_alt = max(d5_len)
else:
d5_alt = len(strings[6])
#d6
if ',' in strings[14]:
d6 = strings[14].split(',')
d6_len = [len(i) for i in d6]
d6_alt = max(d6_len)
else:
d6_alt = len(strings[14])
#f7
if ',' in strings[22]:
f7 = strings[22].split(',')
f7_len = [len(i) for i in f7]
f7_alt = max(f7_len)
else:
f7_alt = len(strings[22])
#m8
if ',' in strings[30]:
m8 = strings[30].split(',')
m8_len = [len(i) for i in m8]
m8_alt = max(m8_len)
else:
m8_alt = len(strings[30])
#ref
ref_len = len(strings[34])
if (d5_alt > 50) or (d6_alt > 50) or (f7_alt > 50) or (m8_alt > 50) or (ref_len > 50):
over_50_outfile.write(line)
else:
less_50_outfile.write(line)


input_file = open(sys.argv[1])
for line in islice(input_file, 1, None):
process(line)

+ 43
- 0
codescripts/filter_indel_over_50_mendelian.py Ver arquivo

@@ -0,0 +1,43 @@
from itertools import islice
import fileinput
import sys, argparse, os


# input arguments
parser = argparse.ArgumentParser(description="this script is to exclude indel over 50bp")

parser.add_argument('-i', '--mergedGVCF', type=str, help='merged gVCF txt with only chr, pos, ref, alt and genotypes', required=True)
parser.add_argument('-prefix', '--prefix', type=str, help='prefix of output file', required=True)


args = parser.parse_args()
input_dat = args.mergedGVCF
prefix = args.prefix


# output file
output_name = prefix + '.indel.lessthan50bp.txt'
outfile = open(output_name,'w')


def process(line):
strings = line.strip().split('\t')
#d5
if ',' in strings[3]:
alt = strings[3].split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(strings[3])
#ref
ref_len = len(strings[2])
if (alt_max > 50) or (ref_len > 50):
pass
else:
outfile.write(line)


for line in fileinput.input(input_dat):
process(line)



+ 36
- 0
codescripts/get_filtered_benchmark_vcfinfo.py Ver arquivo

@@ -0,0 +1,36 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput


# input arguments
parser = argparse.ArgumentParser(description="this script is to get filtered and benchmark vcf info")

parser.add_argument('-filtered', '--filtered', type=str, help='filtered position', required=True)
parser.add_argument('-benchmark', '--benchmark', type=str, help='benchmark position', required=True)
parser.add_argument('-vcf', '--vcf', type=str, help='one specific vcf', required=True)
parser.add_argument('-filename', '--filename', type=str, help='output file name', required=True)


args = parser.parse_args()
filtered = args.filtered
benchmark = args.benchmark
vcf = args.vcf
filename = args.filename


# output file
filtered_filename = filename + '.filtered.txt'
benchmark_filename = filename + '.benchmark.txt'

# input files
filtered_dat = pd.read_table(filtered,header=None)
benchmark_dat = pd.read_table(benchmark,header=None)
vcf_dat = pd.read_table(vcf)

filtered_merged_df = pd.merge(filtered_dat, vcf_dat, how='inner',left_on=[0,1], right_on = ['#CHROM','POS'])
benchmark_merged_df = pd.merge(benchmark_dat,vcf_dat, how='inner',left_on=[0,1], right_on = ['#CHROM','POS'])

filtered_merged_df.to_csv(filtered_filename,sep='\t',index=False)
benchmark_merged_df.to_csv(benchmark_filename,sep='\t',index=False)

+ 50
- 0
codescripts/hap_summary.py Ver arquivo

@@ -0,0 +1,50 @@
import pandas as pd
import sys, argparse, os

parser = argparse.ArgumentParser(description="This script is to get information from hap")
parser.add_argument('-hap', '--happy', type=str, help='hap.py table', required=True)
parser.add_argument('-name', '--name', type=str, help='sample name', required=True)

args = parser.parse_args()

hap_file = args.happy
name = args.name

dat = pd.read_table(hap_file)
dat['QUERY.TP'] = dat['QUERY.TOTAL'].astype(int) - dat['QUERY.UNK'].astype(int) - dat['QUERY.FP'].astype(int)
dat['QUERY'] = dat['QUERY.TOTAL'].astype(int) - dat['QUERY.UNK'].astype(int)
indel = dat[['INDEL' in s for s in dat['Type']]]
snv = dat[['SNP' in s for s in dat['Type']]]
indel.reset_index(drop=True, inplace=True)
snv.reset_index(drop=True, inplace=True)
benchmark = pd.concat([snv, indel], axis=1)
benchmark = benchmark[[ 'QUERY.TOTAL', 'QUERY','QUERY.TP','QUERY.FP','TRUTH.FN','METRIC.Precision', 'METRIC.Recall','METRIC.F1_Score']]
benchmark.columns = ['SNV number','INDEL number','SNV query','INDEL query','SNV TP','INDEL TP','SNV FP','INDEL FP','SNV FN','INDEL FN','SNV precision','INDEL precision','SNV recall','INDEL recall','SNV F1','INDEL F1']
benchmark = benchmark[['SNV number','INDEL number','SNV query','INDEL query','SNV TP','INDEL TP','SNV FP','INDEL FP','SNV FN','INDEL FN','SNV precision','INDEL precision','SNV recall','INDEL recall','SNV F1','INDEL F1']]
benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
benchmark['SNV F1'] = benchmark['SNV F1'].astype(float)
benchmark['INDEL F1'] = benchmark['INDEL F1'].astype(float)
benchmark = benchmark.round(2)

name_array = name.split("_")
LCL5_1 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL5_1" + "_" + name_array[5]
LCL5_2 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL5_2" + "_" + name_array[5]
LCL5_3 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL5_3" + "_" + name_array[5]

LCL6_1 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL6_1" + "_" + name_array[5]
LCL6_2 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL6_2" + "_" + name_array[5]
LCL6_3 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL6_3" + "_" + name_array[5]

LCL7_1 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL7_1" + "_" + name_array[5]
LCL7_2 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL7_2" + "_" + name_array[5]
LCL7_3 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL7_3" + "_" + name_array[5]

LCL8_1 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL8_1" + "_" + name_array[5]
LCL8_2 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL8_2" + "_" + name_array[5]
LCL8_3 = name_array[0] + "_" + name_array[1] + "_" + name_array[2] + "_" + name_array[3] + "_" + name_array[4] + "_" + "LCL8_3" + "_" + name_array[5]

benchmark.insert(loc=0, column='Sample', value=[LCL5_1,LCL5_2,LCL5_3,LCL6_1,LCL6_2,LCL6_3,LCL7_1,LCL7_2,LCL7_3,LCL8_1,LCL8_2,LCL8_3])
benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)

+ 416
- 0
codescripts/high_confidence_call_vote.py Ver arquivo

@@ -0,0 +1,416 @@
from __future__ import division
import sys, argparse, os
import fileinput
import re
import pandas as pd
from operator import itemgetter
from collections import Counter
from itertools import islice
from numpy import *
import statistics

# input arguments
parser = argparse.ArgumentParser(description="this script is to count voting number")

parser.add_argument('-vcf', '--multi_sample_vcf', type=str, help='The VCF file you want to count the voting number', required=True)
parser.add_argument('-dup', '--dup_list', type=str, help='Duplication list', required=True)
parser.add_argument('-sample', '--sample_name', type=str, help='which sample of quartet', required=True)
parser.add_argument('-prefix', '--prefix', type=str, help='Prefix of output file name', required=True)

args = parser.parse_args()
multi_sample_vcf = args.multi_sample_vcf
dup_list = args.dup_list
prefix = args.prefix
sample_name = args.sample_name

vcf_header = '''##fileformat=VCFv4.2
##fileDate=20200331
##source=high_confidence_calls_intergration(choppy app)
##reference=GRCh38.d1.vd1
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region">
##INFO=<ID=DETECTED,Number=1,Type=Integer,Description="Number of detected votes">
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number of consnesus votes">
##INFO=<ID=FAM,Number=1,Type=Integer,Description="Number mendelian consisitent votes">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Sum depth of all samples">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Sum alternative depth of all samples">
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency, sum alternative depth / sum depth">
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Average genotype quality">
##FORMAT=<ID=QD,Number=1,Type=Float,Description="Average Variant Confidence/Quality by Depth">
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Average mapping quality">
##FORMAT=<ID=FS,Number=1,Type=Float,Description="Average Phred-scaled p-value using Fisher's exact test to detect strand bias">
##FORMAT=<ID=QUALI,Number=1,Type=Float,Description="Average variant quality">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''

vcf_header_all_sample = '''##fileformat=VCFv4.2
##fileDate=20200331
##reference=GRCh38.d1.vd1
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region">
##INFO=<ID=DUP,Number=1,Type=Flag,Description="Duplicated variant records">
##INFO=<ID=DETECTED,Number=1,Type=Integer,Description="Number of detected votes">
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number of consnesus votes">
##INFO=<ID=FAM,Number=1,Type=Integer,Description="Number mendelian consisitent votes">
##INFO=<ID=ALL_ALT,Number=1,Type=Float,Description="Sum of alternative reads of all samples">
##INFO=<ID=ALL_DP,Number=1,Type=Float,Description="Sum of depth of all samples">
##INFO=<ID=ALL_AF,Number=1,Type=Float,Description="Allele frequency of net alternatice reads and net depth">
##INFO=<ID=GQ_MEAN,Number=1,Type=Float,Description="Mean of genotype quality of all samples">
##INFO=<ID=QD_MEAN,Number=1,Type=Float,Description="Average Variant Confidence/Quality by Depth">
##INFO=<ID=MQ_MEAN,Number=1,Type=Float,Description="Mean of mapping quality of all samples">
##INFO=<ID=FS_MEAN,Number=1,Type=Float,Description="Average Phred-scaled p-value using Fisher's exact test to detect strand bias">
##INFO=<ID=QUAL_MEAN,Number=1,Type=Float,Description="Average variant quality">
##INFO=<ID=PCR,Number=1,Type=String,Description="Consensus of PCR votes">
##INFO=<ID=PCR_FREE,Number=1,Type=String,Description="Consensus of PCR-free votes">
##INFO=<ID=CONSENSUS,Number=1,Type=String,Description="Consensus calls">
##INFO=<ID=CONSENSUS_SEQ,Number=1,Type=String,Description="Consensus sequence">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=String,Description="Depth">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Alternative Depth">
##FORMAT=<ID=AF,Number=1,Type=String,Description="Allele frequency">
##FORMAT=<ID=GQ,Number=1,Type=String,Description="Genotype quality">
##FORMAT=<ID=MQ,Number=1,Type=String,Description="Mapping quality">
##FORMAT=<ID=TWINS,Number=1,Type=String,Description="1 is twins shared, 0 is twins discordant ">
##FORMAT=<ID=TRIO5,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL5 mendelian consistent, 0 is mendelian vioaltion">
##FORMAT=<ID=TRIO6,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL6 mendelian consistent, 0 is mendelian vioaltion">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''
# read in duplication list
dup = pd.read_table(dup_list,header=None)
var_dup = dup[0].tolist()

# output file
benchmark_file_name = prefix + '_voted.vcf'
benchmark_outfile = open(benchmark_file_name,'w')

all_sample_file_name = prefix + '_all_sample_information.vcf'
all_sample_outfile = open(all_sample_file_name,'w')

# write VCF
outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t' + sample_name + '_benchmark_calls\n'
benchmark_outfile.write(vcf_header)
benchmark_outfile.write(outputcolumn)

outputcolumn_all_sample = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+ \
'Quartet_DNA_BGI_SEQ2000_BGI_1_20180518\tQuartet_DNA_BGI_SEQ2000_BGI_2_20180530\tQuartet_DNA_BGI_SEQ2000_BGI_3_20180530\t' + \
'Quartet_DNA_BGI_T7_WGE_1_20191105\tQuartet_DNA_BGI_T7_WGE_2_20191105\tQuartet_DNA_BGI_T7_WGE_3_20191105\t' + \
'Quartet_DNA_ILM_Nova_ARD_1_20181108\tQuartet_DNA_ILM_Nova_ARD_2_20181108\tQuartet_DNA_ILM_Nova_ARD_3_20181108\t' + \
'Quartet_DNA_ILM_Nova_ARD_4_20190111\tQuartet_DNA_ILM_Nova_ARD_5_20190111\tQuartet_DNA_ILM_Nova_ARD_6_20190111\t' + \
'Quartet_DNA_ILM_Nova_BRG_1_20180930\tQuartet_DNA_ILM_Nova_BRG_2_20180930\tQuartet_DNA_ILM_Nova_BRG_3_20180930\t' + \
'Quartet_DNA_ILM_Nova_WUX_1_20190917\tQuartet_DNA_ILM_Nova_WUX_2_20190917\tQuartet_DNA_ILM_Nova_WUX_3_20190917\t' + \
'Quartet_DNA_ILM_XTen_ARD_1_20170403\tQuartet_DNA_ILM_XTen_ARD_2_20170403\tQuartet_DNA_ILM_XTen_ARD_3_20170403\t' + \
'Quartet_DNA_ILM_XTen_NVG_1_20170329\tQuartet_DNA_ILM_XTen_NVG_2_20170329\tQuartet_DNA_ILM_XTen_NVG_3_20170329\t' + \
'Quartet_DNA_ILM_XTen_WUX_1_20170216\tQuartet_DNA_ILM_XTen_WUX_2_20170216\tQuartet_DNA_ILM_XTen_WUX_3_20170216\n'
all_sample_outfile.write(vcf_header_all_sample)
all_sample_outfile.write(outputcolumn_all_sample)



#function
def replace_nan(strings_list):
updated_list = []
for i in strings_list:
if i == '.':
updated_list.append('.:.:.:.:.:.:.:.:.:.:.:.')
else:
updated_list.append(i)
return updated_list

def remove_dot(strings_list):
updated_list = []
for i in strings_list:
if i == '.':
pass
else:
updated_list.append(i)
return updated_list

def detected_number(strings):
gt = [x.split(':')[0] for x in strings]
percentage = 27 - gt.count('.')
return(str(percentage))

def vote_number(strings,consensus_call):
gt = [x.split(':')[0] for x in strings]
gt = [x.replace('.','0/0') for x in gt]
gt = list(map(gt_uniform,[i for i in gt]))
vote_num = gt.count(consensus_call)
return(str(vote_num))

def family_vote(strings,consensus_call):
gt = [x.split(':')[0] for x in strings]
gt = [x.replace('.','0/0') for x in gt]
gt = list(map(gt_uniform,[i for i in gt]))
mendelian = [':'.join(x.split(':')[1:4]) for x in strings]
indices = [i for i, x in enumerate(gt) if x == consensus_call]
matched_mendelian = itemgetter(*indices)(mendelian)
mendelian_num = matched_mendelian.count('1:1:1')
return(str(mendelian_num))

def gt_uniform(strings):
uniformed_gt = ''
allele1 = strings.split('/')[0]
allele2 = strings.split('/')[1]
if int(allele1) > int(allele2):
uniformed_gt = allele2 + '/' + allele1
else:
uniformed_gt = allele1 + '/' + allele2
return uniformed_gt

def decide_by_rep(strings):
consensus_rep = ''
mendelian = [':'.join(x.split(':')[1:4]) for x in strings]
gt = [x.split(':')[0] for x in strings]
gt = [x.replace('.','0/0') for x in gt]
# modified gt turn 2/1 to 1/2
gt = list(map(gt_uniform,[i for i in gt]))
# mendelian consistent?
mendelian_dict = Counter(mendelian)
highest_mendelian = mendelian_dict.most_common(1)
candidate_mendelian = highest_mendelian[0][0]
freq_mendelian = highest_mendelian[0][1]
if (candidate_mendelian == '1:1:1') and (freq_mendelian >= 2):
gt_num_dict = Counter(gt)
highest_gt = gt_num_dict.most_common(1)
candidate_gt = highest_gt[0][0]
freq_gt = highest_gt[0][1]
if (candidate_gt != '0/0') and (freq_gt >= 2):
consensus_rep = candidate_gt
elif (candidate_gt == '0/0') and (freq_gt >= 2):
consensus_rep = '0/0'
else:
consensus_rep = 'inconGT'
elif (candidate_mendelian == '') and (freq_mendelian >= 2):
consensus_rep = 'noInfo'
else:
consensus_rep = 'inconMen'
return consensus_rep


def main():
for line in fileinput.input(multi_sample_vcf):
headline = re.match('^\#',line)
if headline is not None:
pass
else:
line = line.strip()
strings = line.split('\t')
variant_id = '_'.join([strings[0],strings[1]])
# check if the variants location is duplicated
if variant_id in var_dup:
strings[7] = strings[7] + ';DUP'
outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(outLine)
else:
# pre-define
pcr_consensus = '.'
pcr_free_consensus = '.'
consensus_call = '.'
consensus_alt_seq = '.'
# pcr
strings[9:] = replace_nan(strings[9:])
pcr = itemgetter(*[9,10,11,27,28,29,30,31,32,33,34,35])(strings)
SEQ2000 = decide_by_rep(pcr[0:3])
XTen_ARD = decide_by_rep(pcr[3:6])
XTen_NVG = decide_by_rep(pcr[6:9])
XTen_WUX = decide_by_rep(pcr[9:12])
sequence_site = [SEQ2000,XTen_ARD,XTen_NVG,XTen_WUX]
sequence_dict = Counter(sequence_site)
highest_sequence = sequence_dict.most_common(1)
candidate_sequence = highest_sequence[0][0]
freq_sequence = highest_sequence[0][1]
if freq_sequence > 2:
pcr_consensus = candidate_sequence
else:
pcr_consensus = 'inconSequenceSite'
# pcr-free
pcr_free = itemgetter(*[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26])(strings)
T7_WGE = decide_by_rep(pcr_free[0:3])
Nova_ARD_1 = decide_by_rep(pcr_free[3:6])
Nova_ARD_2 = decide_by_rep(pcr_free[6:9])
Nova_BRG = decide_by_rep(pcr_free[9:12])
Nova_WUX = decide_by_rep(pcr_free[12:15])
sequence_site = [T7_WGE,Nova_ARD_1,Nova_ARD_2,Nova_BRG,Nova_WUX]
highest_sequence = sequence_dict.most_common(1)
candidate_sequence = highest_sequence[0][0]
freq_sequence = highest_sequence[0][1]
if freq_sequence > 3:
pcr_free_consensus = candidate_sequence
else:
pcr_free_consensus = 'inconSequenceSite'
# pcr and pcr-free
tag = ['inconGT','noInfo','inconMen','inconSequenceSite']
if (pcr_consensus == pcr_free_consensus) and (pcr_consensus not in tag) and (pcr_consensus != '0/0'):
consensus_call = pcr_consensus
VOTED = vote_number(strings[9:],consensus_call)
strings[7] = strings[7] + ';VOTED=' + VOTED
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
FAM = family_vote(strings[9:],consensus_call)
strings[7] = strings[7] + ';FAM=' + FAM
# Delete multiple alternative genotype to necessary expression
alt = strings[4]
alt_gt = alt.split(',')
if len(alt_gt) > 1:
allele1 = consensus_call.split('/')[0]
allele2 = consensus_call.split('/')[1]
if allele1 == '0':
allele2_seq = alt_gt[int(allele2) - 1]
consensus_alt_seq = allele2_seq
consensus_call = '0/1'
else:
allele1_seq = alt_gt[int(allele1) - 1]
allele2_seq = alt_gt[int(allele2) - 1]
if int(allele1) > int(allele2):
consensus_alt_seq = allele2_seq + ',' + allele1_seq
consensus_call = '1/2'
elif int(allele1) < int(allele2):
consensus_alt_seq = allele1_seq + ',' + allele2_seq
consensus_call = '1/2'
else:
consensus_alt_seq = allele1_seq
consensus_call = '1/1'
else:
consensus_alt_seq = alt
# GT:DP:ALT:AF:GQ:QD:MQ:FS:QUAL
# GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL:rawGT
# DP
DP = [x.split(':')[4] for x in strings[9:]]
DP = remove_dot(DP)
DP = [int(x) for x in DP]
ALL_DP = sum(DP)
# AF
ALT = [x.split(':')[5] for x in strings[9:]]
ALT = remove_dot(ALT)
ALT = [int(x) for x in ALT]
ALL_ALT = sum(ALT)
ALL_AF = round(ALL_ALT/ALL_DP,2)
# GQ
GQ = [x.split(':')[7] for x in strings[9:]]
GQ = remove_dot(GQ)
GQ = [int(x) for x in GQ]
GQ_MEAN = round(mean(GQ),2)
# QD
QD = [x.split(':')[8] for x in strings[9:]]
QD = remove_dot(QD)
QD = [float(x) for x in QD]
QD_MEAN = round(mean(QD),2)
# MQ
MQ = [x.split(':')[9] for x in strings[9:]]
MQ = remove_dot(MQ)
MQ = [float(x) for x in MQ]
MQ_MEAN = round(mean(MQ),2)
# FS
FS = [x.split(':')[10] for x in strings[9:]]
FS = remove_dot(FS)
FS = [float(x) for x in FS]
FS_MEAN = round(mean(FS),2)
# QUAL
QUAL = [x.split(':')[11] for x in strings[9:]]
QUAL = remove_dot(QUAL)
QUAL = [float(x) for x in QUAL]
QUAL_MEAN = round(mean(QUAL),2)
# benchmark output
output_format = consensus_call + ':' + str(ALL_DP) + ':' + str(ALL_ALT) + ':' + str(ALL_AF) + ':' + str(GQ_MEAN) + ':' + str(QD_MEAN) + ':' + str(MQ_MEAN) + ':' + str(FS_MEAN) + ':' + str(QUAL_MEAN)
outLine = strings[0] + '\t' + strings[1] + '\t' + strings[2] + '\t' + strings[3] + '\t' + consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' + strings[7] + '\t' + 'GT:DP:ALT:AF:GQ:QD:MQ:FS:QUAL' + '\t' + output_format + '\n'
benchmark_outfile.write(outLine)
# all sample output
strings[7] = strings[7] + ';ALL_ALT=' + str(ALL_ALT) + ';ALL_DP=' + str(ALL_DP) + ';ALL_AF=' + str(ALL_AF) \
+ ';GQ_MEAN=' + str(GQ_MEAN) + ';QD_MEAN=' + str(QD_MEAN) + ';MQ_MEAN=' + str(MQ_MEAN) + ';FS_MEAN=' + str(FS_MEAN) \
+ ';QUAL_MEAN=' + str(QUAL_MEAN) + ';PCR=' + consensus_call + ';PCR_FREE=' + consensus_call + ';CONSENSUS=' + consensus_call \
+ ';CONSENSUS_SEQ=' + consensus_alt_seq
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif (pcr_consensus in tag) and (pcr_free_consensus in tag):
consensus_call = 'filtered'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif ((pcr_consensus == '0/0') or (pcr_consensus in tag)) and ((pcr_free_consensus not in tag) and (pcr_free_consensus != '0/0')):
consensus_call = 'pcr-free-speicifc'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif ((pcr_consensus != '0/0') or (pcr_consensus not in tag)) and ((pcr_free_consensus in tag) and (pcr_free_consensus == '0/0')):
consensus_call = 'pcr-speicifc'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call + ';PCR=' + pcr_consensus + ';PCR_FREE=' + pcr_free_consensus
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif (pcr_consensus == '0/0') and (pcr_free_consensus == '0/0'):
consensus_call = 'confirm for parents'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
else:
consensus_call = 'filtered'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)

if __name__ == '__main__':
main()













+ 42
- 0
codescripts/high_voted_mendelian_bed.py Ver arquivo

@@ -0,0 +1,42 @@
import pandas as pd
import sys, argparse, os
mut = pd.read_table(sys.argv[1])
outFile = open(sys.argv[2],'w')
for row in mut.itertuples():
#d5
if ',' in row.V4:
alt = row.V4.split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(row.V4)
#d6
alt = alt_max
ref = row.V3
pos = int(row.V2)
if len(ref) == 1 and alt == 1:
StartPos = int(pos) -1
EndPos = int(pos)
cate = 'SNV'
elif len(ref) > alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
cate = 'INDEL'
elif alt > len(ref):
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
elif len(ref) == alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
outline = row.V1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\t' + str(row.V2) + '\t' + cate + '\n'
outFile.write(outline)









+ 50
- 0
codescripts/how_many_samples.py Ver arquivo

@@ -0,0 +1,50 @@
import pandas as pd
import sys, argparse, os
from operator import itemgetter

parser = argparse.ArgumentParser(description="This script is to get how many samples")

parser.add_argument('-sample', '--sample', type=str, help='quartet_sample', required=True)
parser.add_argument('-rep', '--rep', type=str, help='quartet_rep', required=True)
args = parser.parse_args()

# Rename input:
sample = args.sample
rep = args.rep

quartet_sample = pd.read_table(sample,header=None)
quartet_sample = list(quartet_sample[0])
quartet_rep = pd.read_table(rep,header=None)
quartet_rep = quartet_rep[0]

#tags
sister_tag = 'false'
quartet_tag = 'false'

quartet_rep_unique = list(set(quartet_rep))

single_rep = [i for i in range(len(quartet_rep)) if quartet_rep[i] == quartet_rep_unique[0]]
single_batch_sample = itemgetter(*single_rep)(quartet_sample)

num = len(single_batch_sample)
if num == 1:
sister_tag = 'false'
quartet_tag = 'false'
elif num == 2:
if set(single_batch_sample) == set(['LCL5','LCL6']):
sister_tag = 'true'
quartet_tag = 'false'
elif num == 3:
if ('LCL5' in single_batch_sample) and ('LCL6' in single_batch_sample):
sister_tag = 'true'
quartet_tag = 'false'
elif num == 4:
if set(single_batch_sample) == set(['LCL5','LCL6','LCL7','LCL8']):
sister_tag = 'false'
quartet_tag = 'true'

sister_outfile = open('sister_tag','w')
quartet_outfile = open('quartet_tag','w')

sister_outfile.write(sister_tag)
quartet_outfile.write(quartet_tag)

+ 42
- 0
codescripts/lcl5_all_called_variants.py Ver arquivo

@@ -0,0 +1,42 @@
from __future__ import division
import sys, argparse, os
import pandas as pd
from collections import Counter

# input arguments
parser = argparse.ArgumentParser(description="this script is to merge mendelian and vcfinfo, and extract high_confidence_calls")
parser.add_argument('-vcf', '--vcf', type=str, help='merged multiple sample vcf', required=True)


args = parser.parse_args()
vcf = args.vcf

lcl5_outfile = open('LCL5_all_variants.txt','w')
filtered_outfile = open('LCL5_filtered_variants.txt','w')

vcf_dat = pd.read_table(vcf)


for row in vcf_dat.itertuples():
lcl5_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL5_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL5_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL5_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL5_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL5_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL5_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_3_20170216]
lcl5_vcf_gt = [x.split(':')[0] for x in lcl5_list]
lcl5_gt=[item.replace('./.', '0/0') for item in lcl5_vcf_gt]
gt_dict = Counter(lcl5_gt)
highest_gt = gt_dict.most_common(1)
candidate_gt = highest_gt[0][0]
freq_gt = highest_gt[0][1]
output = row._1 + '\t' + str(row.POS) + '\t' + '\t'.join(lcl5_gt) + '\n'
if (candidate_gt == '0/0') and (freq_gt == 27):
filtered_outfile.write(output)
else:
lcl5_outfile.write(output)



+ 6
- 0
codescripts/linux_command.sh Ver arquivo

@@ -0,0 +1,6 @@
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$7"\t.\t.\t.\tGT\t"$6}' | grep -v '2_y' > LCL5.body
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$15"\t.\t.\t.\tGT\t"$14}' | grep -v '2_y' > LCL6.body
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$23"\t.\t.\t.\tGT\t"$22}' | grep -v '2_y' > LCL7.body
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$31"\t.\t.\t.\tGT\t"$30}' | grep -v '2_y' > LCL8.body

for i in *txt; do cat $i | awk '{ if ((length($3) == 1) && (length($4) == 1)) { print } }' | grep -v '#' | cut -f3,4 | sort |uniq -c | sed 's/\s\+/\t/g' | cut -f2 > $i.mut; done

+ 129
- 0
codescripts/merge_mendelian_vcfinfo.py Ver arquivo

@@ -0,0 +1,129 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput
import re

# input arguments
parser = argparse.ArgumentParser(description="this script is to get final high confidence calls and information of all replicates")

parser.add_argument('-vcfInfo', '--vcfInfo', type=str, help='The txt file of variants information, this file is named as prefix__variant_quality_location.txt', required=True)
parser.add_argument('-mendelianInfo', '--mendelianInfo', type=str, help='The merged mendelian information of all samples', required=True)
parser.add_argument('-sample', '--sample_name', type=str, help='which sample of quartet', required=True)


args = parser.parse_args()
vcfInfo = args.vcfInfo
mendelianInfo = args.mendelianInfo
sample_name = args.sample_name


#GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL

vcf_header = '''##fileformat=VCFv4.2
##fileDate=20200331
##source=high_confidence_calls_intergration(choppy app)
##reference=GRCh38.d1.vd1
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=TWINS,Number=1,Type=Flag,Description="1 for sister consistent, 0 for sister different">
##FORMAT=<ID=TRIO5,Number=1,Type=Flag,Description="1 for LCL7, LCL8 and LCL5 mendelian consistent, 0 for family violation">
##FORMAT=<ID=TRIO6,Number=1,Type=Flag,Description="1 for LCL7, LCL8 and LCL6 mendelian consistent, 0 for family violation">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Depth">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Alternative Depth">
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype quality">
##FORMAT=<ID=QD,Number=1,Type=Float,Description="Variant Confidence/Quality by Depth">
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Mapping quality">
##FORMAT=<ID=FS,Number=1,Type=Float,Description="Phred-scaled p-value using Fisher's exact test to detect strand bias">
##FORMAT=<ID=QUAL,Number=1,Type=Float,Description="variant quality">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''

# output file
file_name = sample_name + '_mendelian_vcfInfo.vcf'
outfile = open(file_name,'w')

outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t' + sample_name + '\n'
outfile.write(vcf_header)
outfile.write(outputcolumn)

# input files
vcf_info = pd.read_table(vcfInfo)
mendelian_info = pd.read_table(mendelianInfo)

merged_df = pd.merge(vcf_info, mendelian_info, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])
merged_df = merged_df.fillna('.')

#
def parse_INFO(info):
strings = info.strip().split(';')
keys = []
values = []
for i in strings:
kv = i.split('=')
if kv[0] == 'DB':
keys.append('DB')
values.append('1')
else:
keys.append(kv[0])
values.append(kv[1])
infoDict = dict(zip(keys, values))
return infoDict
#
for row in merged_df.itertuples():
if row[18] != '.':
# format
# GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL
FORMAT_x = row[10].split(':')
ALT = int(FORMAT_x[1].split(',')[1])
if int(FORMAT_x[2]) != 0:
AF = round(ALT/int(FORMAT_x[2]),2)
else:
AF = '.'
INFO_x = parse_INFO(row.INFO_x)
if FORMAT_x[2] == '0':
INFO_x['QD'] = '.'
else:
pass
FORMAT = row[18] + ':' + FORMAT_x[2] + ':' + str(ALT) + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x)
# outline
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_y + '\t' + row.ALT_y + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL' + '\t' + FORMAT + '\n'
else:
rawGT = row[10].split(':')
FORMAT_x = row[10].split(':')
ALT = int(FORMAT_x[1].split(',')[1])
if int(FORMAT_x[2]) != 0:
AF = round(ALT/int(FORMAT_x[2]),2)
else:
AF = '.'
INFO_x = parse_INFO(row.INFO_x)
if FORMAT_x[2] == '0':
INFO_x['QD'] = '.'
else:
pass
FORMAT = '.:.:.:.' + ':' + FORMAT_x[2] + ':' + str(ALT) + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x) + ':' + rawGT[0]
# outline
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_x + '\t' + row.ALT_x + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL:rawGT' + '\t' + FORMAT + '\n'
outfile.write(outline)

+ 71
- 0
codescripts/merge_two_family.py Ver arquivo

@@ -0,0 +1,71 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput
import re

# input arguments
parser = argparse.ArgumentParser(description="this script is to extract mendelian concordance information")

parser.add_argument('-LCL5', '--LCL5', type=str, help='LCL5 family info', required=True)
parser.add_argument('-LCL6', '--LCL6', type=str, help='LCL6 family info', required=True)
parser.add_argument('-family', '--family', type=str, help='family name', required=True)


args = parser.parse_args()
lcl5 = args.LCL5
lcl6 = args.LCL6
family = args.family


# output file
family_name = family + '.txt'

family_file = open(family_name,'w')

# input files
lcl5_dat = pd.read_table(lcl5)
lcl6_dat = pd.read_table(lcl6)

merged_df = pd.merge(lcl5_dat, lcl6_dat, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])

def alt_seq(alt, genotype):
if genotype == './.':
seq = './.'
elif genotype == '0/0':
seq = '0/0'
else:
alt = alt.split(',')
genotype = genotype.split('/')
if genotype[0] == '0':
allele2 = alt[int(genotype[1]) - 1]
seq = '0/' + allele2
else:
allele1 = alt[int(genotype[0]) - 1]
allele2 = alt[int(genotype[1]) - 1]
seq = allele1 + '/' + allele2
return seq

for row in merged_df.itertuples():
# correction of multiallele
if pd.isnull(row.INFO_x) == True or pd.isnull(row.INFO_y) == True:
mendelian = '.'
else:
lcl5_seq = alt_seq(row.ALT_x, row.CHILD_x)
lcl6_seq = alt_seq(row.ALT_y, row.CHILD_y)
if lcl5_seq == lcl6_seq:
mendelian = '1'
else:
mendelian = '0'
if pd.isnull(row.INFO_x) == True:
mendelian = mendelian + ':.'
else:
mendelian = mendelian + ':' + row.INFO_x.split('=')[1]
if pd.isnull(row.INFO_y) == True:
mendelian = mendelian + ':.'
else:
mendelian = mendelian + ':' + row.INFO_y.split('=')[1]


outline = row._1 + '\t' + str(row.POS) + '\t' + mendelian + '\n'
family_file.write(outline)

+ 115
- 0
codescripts/merge_two_family_with_genotype.py Ver arquivo

@@ -0,0 +1,115 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput
import re

# input arguments
parser = argparse.ArgumentParser(description="this script is to extract mendelian concordance information")

parser.add_argument('-LCL5', '--LCL5', type=str, help='LCL5 family info', required=True)
parser.add_argument('-LCL6', '--LCL6', type=str, help='LCL6 family info', required=True)
parser.add_argument('-genotype', '--genotype', type=str, help='Genotype information of a set of four family members', required=True)
parser.add_argument('-family', '--family', type=str, help='family name', required=True)


args = parser.parse_args()
lcl5 = args.LCL5
lcl6 = args.LCL6
genotype = args.genotype
family = args.family


# output file
family_name = family + '.txt'

family_file = open(family_name,'w')

summary_name = family + '.summary.txt'

summary_file = open(summary_name,'w')

# input files
lcl5_dat = pd.read_table(lcl5)
lcl6_dat = pd.read_table(lcl6)
genotype_dat = pd.read_table(genotype)
merged_df = pd.merge(lcl5_dat, lcl6_dat, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])
merged_genotype_df = pd.merge(merged_df, genotype_dat, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])

merged_genotype_df_sub = merged_genotype_df.iloc[:,[0,1,23,24,29,30,31,32,7,17]]
merged_genotype_df_sub.columns = ['CHROM', 'POS', 'REF', 'ALT','LCL5','LCL6','LCL7','LCL8', 'TRIO5', 'TRIO6']

sister_same = 0
sister_diff = 0
family_all = 0
family_mendelian = 0

for row in merged_genotype_df_sub.itertuples():
# sister
if row.LCL5 == row.LCL6:
if row.LCL5 == './.':
mendelian = 'noInfo'
sister_count = "no"
elif row.LCL5 == '0/0':
mendelian = 'Ref'
sister_count = "no"
else:
mendelian = '1'
sister_count = "yes_same"
else:
mendelian = '0'
if (row.LCL5 == './.' or row.LCL5 == '0/0') and (row.LCL6 == './.' or row.LCL6 == '0/0'):
sister_count = "no"
else:
sister_count = "yes_diff"
if sister_count == 'yes_same':
sister_same += 1
elif sister_count == 'yes_diff':
sister_diff += 1
else:
pass
# family trio5
if row.LCL5 == row. LCL7 == row.LCL8 == './.':
mendelian = mendelian + ':noInfo'
elif row.LCL5 == row. LCL7 == row.LCL8 == '0/0':
mendelian = mendelian + ':Ref'
elif pd.isnull(row.TRIO5) == True:
mendelian = mendelian + ':unVBT'
else:
mendelian = mendelian + ':' + row.TRIO5.split('=')[1]
# family trio6
if row.LCL6 == row.LCL7 == row.LCL8 == './.':
mendelian = mendelian + ':noInfo'
elif row.LCL6 == row. LCL7 == row.LCL8 == '0/0':
mendelian = mendelian + ':Ref'
elif pd.isnull(row.TRIO6) == True:
mendelian = mendelian + ':unVBT'
else:
mendelian = mendelian + ':' + row.TRIO6.split('=')[1]
# not count into family
if (row.LCL5 == './.' or row.LCL5 == '0/0') and (row.LCL6 == './.' or row.LCL6 == '0/0') and (row.LCL7 == './.' or row.LCL7 == '0/0') and (row.LCL8 == './.' or row.LCL8 == '0/0'):
mendelian_count = "no"
else:
mendelian_count = "yes"
outline = row.CHROM + '\t' + str(row.POS) + '\t' + row.REF + '\t' + row.ALT + '\t' + row.LCL5 + '\t' + row.LCL6 + '\t' + row.LCL7 + '\t' + row.LCL8 + '\t' + str(row.TRIO5) + '\t' + str(row.TRIO6) + '\t' + str(mendelian) + '\t' + str(mendelian_count) + '\t' + str(sister_count) + '\n'
family_file.write(outline)
if mendelian_count == 'yes':
family_all += 1
else:
pass
if mendelian == '1:1:1':
family_mendelian += 1
elif mendelian == 'Ref:1:1':
family_mendelian += 1
else:
pass

sister = sister_same/(sister_same + sister_diff)
quartet = family_mendelian/family_all
outcolumn = 'Family\tReproducibility_D5_D6\tMendelian_Concordance_Quartet\n'
outResult = family + '\t' + str(sister) + '\t' + str(quartet) + '\n'
summary_file.write(outcolumn)
summary_file.write(outResult)




+ 109
- 0
codescripts/oneClass.py Ver arquivo

@@ -0,0 +1,109 @@
# import modules
import numpy as np
import pandas as pd
from sklearn import svm
from sklearn import preprocessing
import sys, argparse, os
from vcf2bed import position_to_bed,padding_region



parser = argparse.ArgumentParser(description="this script is to preform one calss svm on each chromosome")

parser.add_argument('-train', '--trainDataset', type=str, help='training dataset generated from extracting vcf information part, with mutaitons supported by callsets', required=True)
parser.add_argument('-test', '--testDataset', type=str, help='testing dataset generated from extracting vcf information part, with mutaitons not called by all callsets', required=True)
parser.add_argument('-name', '--sampleName', type=str, help='sample name for output file name', required=True)

args = parser.parse_args()

# Rename input:
train_input = args.trainDataset
test_input = args.testDataset
sample_name = args.sampleName

# default columns, which will be included in the included in the calssifier
chromosome = ['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15' ,'chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX','chrY']
feature_heter_cols = ['AltDP','BaseQRankSum','DB','DP','FS','GQ','MQ','MQRankSum','QD','ReadPosRankSum','RefDP','SOR','af']
feature_homo_cols = ['AltDP','DB','DP','FS','GQ','MQ','QD','RefDP','SOR','af']


# import datasets sepearate the records with or without BaseQRankSum annotation, etc.
def load_dat(dat_file_name):
dat = pd.read_table(dat_file_name)
dat['DB'] = dat['DB'].fillna(0)
dat = dat[dat['DP'] != 0]
dat['af'] = dat['AltDP']/(dat['AltDP'] + dat['RefDP'])
homo_rows = dat[dat['BaseQRankSum'].isnull()]
heter_rows = dat[dat['BaseQRankSum'].notnull()]
return homo_rows,heter_rows


train_homo,train_heter = load_dat(train_input)
test_homo,test_heter = load_dat(test_input)
clf = svm.OneClassSVM(nu=0.05,kernel='rbf', gamma='auto_deprecated',cache_size=500)

def prepare_dat(train_dat,test_dat,feature_cols,chromo):
chr_train = train_dat[train_dat['chromo'] == chromo]
chr_test = test_dat[test_dat['chromo'] == chromo]
train_dat = chr_train.loc[:,feature_cols]
test_dat = chr_test.loc[:,feature_cols]
train_dat_scaled = preprocessing.scale(train_dat)
test_dat_scaled = preprocessing.scale(test_dat)
return chr_test,train_dat_scaled,test_dat_scaled

def oneclass(X_train,X_test,chr_test):
clf.fit(X_train)
y_pred_test = clf.predict(X_test)
test_true_dat = chr_test[y_pred_test == 1]
test_false_dat = chr_test[y_pred_test == -1]
return test_true_dat,test_false_dat

predicted_true = pd.DataFrame(columns=train_homo.columns)
predicted_false = pd.DataFrame(columns=train_homo.columns)

for chromo in chromosome:
# homo datasets
chr_test_homo,X_train_homo,X_test_homo = prepare_dat(train_homo,test_homo,feature_homo_cols,chromo)
test_true_homo,test_false_homo = oneclass(X_train_homo,X_test_homo,chr_test_homo)
predicted_true = predicted_true.append(test_true_homo)
predicted_false = predicted_false.append(test_false_homo)
# heter datasets
chr_test_heter,X_train_heter,X_test_heter = prepare_dat(train_heter,test_heter,feature_heter_cols,chromo)
test_true_heter,test_false_heter = oneclass(X_train_heter,X_test_heter,chr_test_heter)
predicted_true = predicted_true.append(test_true_heter)
predicted_false = predicted_false.append(test_false_heter)

predicted_true_filename = sample_name + '_predicted_true.txt'
predicted_false_filename = sample_name + '_predicted_false.txt'

predicted_true.to_csv(predicted_true_filename,sep='\t',index=False)
predicted_false.to_csv(predicted_false_filename,sep='\t',index=False)

# output the bed file and padding bed region 50bp

predicted_true_bed_filename = sample_name + '_predicted_true.bed'
predicted_false_bed_filename = sample_name + '_predicted_false.bed'
padding_filename = sample_name + '_padding.bed'

predicted_true_bed = open(predicted_true_bed_filename,'w')
predicted_false_bed = open(predicted_false_bed_filename,'w')
padding = open(padding_filename,'w')

#
for index,row in predicted_false.iterrows():
chromo,pos1,pos2 = position_to_bed(row['chromo'],row['pos'],row['ref'],row['alt'])
outline_pos = chromo + '\t' + str(pos1) + '\t' + str(pos2) + '\n'
predicted_false_bed.write(outline_pos)
chromo,pad_pos1,pad_pos2,pad_pos3,pad_pos4 = padding_region(chromo,pos1,pos2,50)
outline_pad_1 = chromo + '\t' + str(pad_pos1) + '\t' + str(pad_pos2) + '\n'
outline_pad_2 = chromo + '\t' + str(pad_pos3) + '\t' + str(pad_pos4) + '\n'
padding.write(outline_pad_1)
padding.write(outline_pad_2)

for index,row in predicted_true.iterrows():
chromo,pos1,pos2 = position_to_bed(row['chromo'],row['pos'],row['ref'],row['alt'])
outline_pos = chromo + '\t' + str(pos1) + '\t' + str(pos2) + '\n'
predicted_true_bed.write(outline_pos)



+ 25
- 0
codescripts/precision_recall Ver arquivo

@@ -0,0 +1,25 @@
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 611469 32000 579469 52892 10380 10361 5049 0.052333 0.755943 0.19589 0.097889 1.60450055781 0.506141804262
SNP ALL 3607071 270183 3336888 342022 52610 19197 32200 0.074904 0.837032 0.056128 0.137503 2.06510079715 2.31948838383 1.35160768181 0.585277660595
INDEL ALL 611469 32000 579469 52892 10380 10361 5049 0.052333 0.755943 0.19589 0.097889 1.60450055781 0.506141804262
SNP ALL 3607071 270183 3336888 342022 52610 19197 32200 0.074904 0.837032 0.056128 0.137503 2.06510079715 2.31948838383 1.35160768181 0.585277660595
INDEL ALL 611469 32000 579469 52892 10380 10361 5049 0.052333 0.755943 0.19589 0.097889 1.60450055781 0.506141804262
SNP ALL 3607071 270183 3336888 342022 52610 19197 32200 0.074904 0.837032 0.056128 0.137503 2.06510079715 2.31948838383 1.35160768181 0.585277660595
INDEL ALL 611469 27751 583718 45833 8555 9382 4372 0.045384 0.765301 0.2047 0.085687 1.60450055781 0.544685459037
SNP ALL 3607071 229603 3377468 285728 38719 17379 25945 0.063654 0.855714 0.060824 0.118493 2.06510079715 2.2934525799 1.35160768181 0.611069128478
INDEL ALL 611469 27751 583718 45833 8555 9382 4372 0.045384 0.765301 0.2047 0.085687 1.60450055781 0.544685459037
SNP ALL 3607071 229603 3377468 285728 38719 17379 25945 0.063654 0.855714 0.060824 0.118493 2.06510079715 2.2934525799 1.35160768181 0.611069128478
INDEL ALL 611469 27751 583718 45833 8555 9382 4372 0.045384 0.765301 0.2047 0.085687 1.60450055781 0.544685459037
SNP ALL 3607071 229603 3377468 285728 38719 17379 25945 0.063654 0.855714 0.060824 0.118493 2.06510079715 2.2934525799 1.35160768181 0.611069128478
INDEL ALL 602890 30755 572135 49871 9073 9927 4713 0.051013 0.772857 0.199054 0.095708 1.45794812615 0.537973508294
SNP ALL 3586918 261507 3325411 323937 43923 18478 30285 0.072906 0.856207 0.057042 0.13437 2.06425234942 2.30355959336 1.29577693834 0.580073379456
INDEL ALL 602890 30755 572135 49871 9073 9927 4713 0.051013 0.772857 0.199054 0.095708 1.45794812615 0.537973508294
SNP ALL 3586918 261507 3325411 323937 43923 18478 30285 0.072906 0.856207 0.057042 0.13437 2.06425234942 2.30355959336 1.29577693834 0.580073379456
INDEL ALL 602890 30755 572135 49871 9073 9927 4713 0.051013 0.772857 0.199054 0.095708 1.45794812615 0.537973508294
SNP ALL 3586918 261507 3325411 323937 43923 18478 30285 0.072906 0.856207 0.057042 0.13437 2.06425234942 2.30355959336 1.29577693834 0.580073379456
INDEL ALL 608169 27666 580503 45885 9139 8953 4193 0.045491 0.752545 0.195118 0.085795 1.50870570513 0.547063202057
SNP ALL 3604200 234173 3370027 307086 54292 18602 26830 0.064972 0.811802 0.060576 0.120315 2.06546454872 2.33046326017 1.34261182662 0.630876119451
INDEL ALL 608169 27666 580503 45885 9139 8953 4193 0.045491 0.752545 0.195118 0.085795 1.50870570513 0.547063202057
SNP ALL 3604200 234173 3370027 307086 54292 18602 26830 0.064972 0.811802 0.060576 0.120315 2.06546454872 2.33046326017 1.34261182662 0.630876119451
INDEL ALL 608169 27666 580503 45885 9139 8953 4193 0.045491 0.752545 0.195118 0.085795 1.50870570513 0.547063202057
SNP ALL 3604200 234173 3370027 307086 54292 18602 26830 0.064972 0.811802 0.060576 0.120315 2.06546454872 2.33046326017 1.34261182662 0.630876119451

+ 144
- 0
codescripts/reformVCF.py Ver arquivo

@@ -0,0 +1,144 @@
# import modules
import sys, argparse, os
import fileinput
import re

parser = argparse.ArgumentParser(description="This script is to split samples in VCF files and rewrite to the right style")

parser.add_argument('-vcf', '--familyVCF', type=str, help='VCF with sister and mendelian infomation', required=True)
parser.add_argument('-name', '--familyName', type=str, help='Family name of the VCF file', required=True)

args = parser.parse_args()

# Rename input:
inputFile = args.familyVCF
family_name = args.familyName

# output filename
LCL5_name = family_name + '.LCL5.vcf'
LCL5file = open(LCL5_name,'w')
LCL6_name = family_name + '.LCL6.vcf'
LCL6file = open(LCL6_name,'w')
LCL7_name = family_name + '.LCL7.vcf'
LCL7file = open(LCL7_name,'w')
LCL8_name = family_name + '.LCL8.vcf'
LCL8file = open(LCL8_name,'w')
family_filename = family_name + '.vcf'
familyfile = open(family_filename,'w')

# default columns, which will be included in the included in the calssifier
vcfheader = '''##fileformat=VCFv4.2
##FILTER=<ID=PASS,Description="the same genotype between twin sister and mendelian consistent in 578 and 678">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=TWINS,Number=0,Type=Flag,Description="0 for sister consistent, 1 for sister inconsistent">
##FORMAT=<ID=TRIO5,Number=0,Type=Flag,Description="0 for trio consistent, 1 for trio inconsistent">
##FORMAT=<ID=TRIO6,Number=0,Type=Flag,Description="0 for trio consistent, 1 for trio inconsistent">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''
# write VCF
LCL5colname = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+family_name+'_LCL5'+'\n'
LCL5file.write(vcfheader)
LCL5file.write(LCL5colname)

LCL6colname = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+family_name+'_LCL6'+'\n'
LCL6file.write(vcfheader)
LCL6file.write(LCL6colname)

LCL7colname = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+family_name+'_LCL7'+'\n'
LCL7file.write(vcfheader)
LCL7file.write(LCL7colname)

LCL8colname = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+family_name+'_LCL8'+'\n'
LCL8file.write(vcfheader)
LCL8file.write(LCL8colname)

familycolname = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+'LCL5\t'+'LCL6\t'+'LCL7\t'+'LCL8'+'\n'
familyfile.write(vcfheader)
familyfile.write(familycolname)

# reform VCF
def process(oneLine):
line = oneLine.rstrip()
strings = line.strip().split('\t')
# replace .
# LCL6 uniq
if strings[11] == '.':
strings[11] = '0/0'
strings[9] = strings[12]
strings[10] = strings[13]
else:
pass
# LCL5 uniq
if strings[14] == '.':
strings[14] = '0/0'
strings[12] = strings[9]
strings[13] = strings[10]
else:
pass
# sister
if strings[11] == strings[14]:
add_format = ":1"
else:
add_format = ":0"
# trioLCL5
if strings[15] == 'MD=1':
add_format = add_format + ":1"
else:
add_format = add_format + ":0"
# trioLCL6
if strings[7] == 'MD=1':
add_format = add_format + ":1"
else:
add_format = add_format + ":0"
# filter
if (strings[11] == strings[14]) and (strings[15] == 'MD=1') and (strings[7] == 'MD=1'):
strings[6] = 'PASS'
else:
strings[6] = '.'
# output LCL5
LCL5outLine = strings[0]+'\t'+strings[1]+'\t'+strings[2]+'\t'+strings[3]+'\t'+strings[4]+'\t'+'.'+'\t'+strings[6]+'\t'+ '.' +'\t'+ 'GT:TWINS:TRIO5:TRIO6' + '\t' + strings[14] + add_format + '\n'
LCL5file.write(LCL5outLine)
# output LCL6
LCL6outLine = strings[0]+'\t'+strings[1]+'\t'+strings[2]+'\t'+strings[3]+'\t'+strings[4]+'\t'+'.'+'\t'+strings[6]+'\t'+ '.' +'\t'+ 'GT:TWINS:TRIO5:TRIO6' + '\t' + strings[11] + add_format + '\n'
LCL6file.write(LCL6outLine)
# output LCL7
LCL7outLine = strings[0]+'\t'+strings[1]+'\t'+strings[2]+'\t'+strings[3]+'\t'+strings[4]+'\t'+'.'+'\t'+strings[6]+'\t'+ '.' +'\t'+ 'GT:TWINS:TRIO5:TRIO6' + '\t' + strings[10] + add_format + '\n'
LCL7file.write(LCL7outLine)
# output LCL8
LCL8outLine = strings[0]+'\t'+strings[1]+'\t'+strings[2]+'\t'+strings[3]+'\t'+strings[4]+'\t'+'.'+'\t'+strings[6]+'\t'+ '.' +'\t'+ 'GT:TWINS:TRIO5:TRIO6' + '\t' + strings[9] + add_format + '\n'
LCL8file.write(LCL8outLine)
# output family
familyoutLine = strings[0]+'\t'+strings[1]+'\t'+strings[2]+'\t'+strings[3]+'\t'+strings[4]+'\t'+ '.'+'\t'+strings[6]+'\t'+ '.' +'\t'+ 'GT:TWINS:TRIO5:TRIO6' + '\t' + strings[14] + add_format +'\t' + strings[11] + add_format + '\t' + strings[10] + add_format +'\t' + strings[9] + add_format + '\n'
familyfile.write(familyoutLine)


for line in fileinput.input(inputFile):
m = re.match('^\#',line)
if m is not None:
pass
else:
process(line)


+ 227
- 0
codescripts/replicates_consensus.py Ver arquivo

@@ -0,0 +1,227 @@
from __future__ import division
from glob import glob
import sys, argparse, os
import fileinput
import re
import pandas as pd
from operator import itemgetter
from collections import Counter
from itertools import islice
from numpy import *
import statistics

# input arguments
parser = argparse.ArgumentParser(description="this script is to merge mendelian and vcfinfo, and extract high_confidence_calls")

parser.add_argument('-prefix', '--prefix', type=str, help='prefix of output file', required=True)
parser.add_argument('-vcf', '--vcf', type=str, help='merged multiple sample vcf', required=True)


args = parser.parse_args()
prefix = args.prefix
vcf = args.vcf

# input files
vcf_dat = pd.read_table(vcf)

# all info
all_file_name = prefix + "_all_summary.txt"
all_sample_outfile = open(all_file_name,'w')
all_info_col = 'CHROM\tPOS\tREF\tALT\tLCL5_consensus_calls\tLCL5_detect_number\tLCL5_same_diff\tLCL6_consensus_calls\tLCL6_detect_number\tLCl6_same_diff\tLCL7_consensus_calls\tLCL7_detect_number\tLCL7_same_diff\tLCL8_consensus_calls\tLCL8_detect_number\tLCL8_same_diff\n'
all_sample_outfile.write(all_info_col)

# filtered info
vcf_header = '''##fileformat=VCFv4.2
##fileDate=20200501
##source=high_confidence_calls_intergration(choppy app)
##reference=GRCh38.d1.vd1
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number mendelian consisitent votes">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''
consensus_file_name = prefix + "_consensus.vcf"
consensus_outfile = open(consensus_file_name,'w')
consensus_col = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL5_consensus_call\tLCL6_consensus_call\tLCL7_consensus_call\tLCL8_consensus_call\n'
consensus_outfile.write(vcf_header)
consensus_outfile.write(consensus_col)

# function
def decide_by_rep(vcf_list):
consensus_rep = ''
gt = [x.split(':')[0] for x in vcf_list]
gt_num_dict = Counter(gt)
highest_gt = gt_num_dict.most_common(1)
candidate_gt = highest_gt[0][0]
freq_gt = highest_gt[0][1]
if freq_gt >= 2:
consensus_rep = candidate_gt
else:
consensus_rep = 'inconGT'
return consensus_rep

def consensus_call(vcf_info_list):
consensus_call = '.'
detect_number = '.'
same_diff = '.'
# pcr
SEQ2000 = decide_by_rep(vcf_info_list[0:3])
XTen_ARD = decide_by_rep(vcf_info_list[18:21])
XTen_NVG = decide_by_rep(vcf_info_list[21:24])
XTen_WUX = decide_by_rep(vcf_info_list[24:27])
Nova_WUX = decide_by_rep(vcf_info_list[15:18])
pcr_sequence_site = [SEQ2000,XTen_ARD,XTen_NVG,XTen_WUX,Nova_WUX]
pcr_sequence_dict = Counter(pcr_sequence_site)
pcr_highest_sequence = pcr_sequence_dict.most_common(1)
pcr_candidate_sequence = pcr_highest_sequence[0][0]
pcr_freq_sequence = pcr_highest_sequence[0][1]
if pcr_freq_sequence > 3:
pcr_consensus = pcr_candidate_sequence
else:
pcr_consensus = 'inconSequenceSite'
# pcr-free
T7_WGE = decide_by_rep(vcf_info_list[3:6])
Nova_ARD_1 = decide_by_rep(vcf_info_list[6:9])
Nova_ARD_2 = decide_by_rep(vcf_info_list[9:12])
Nova_BRG = decide_by_rep(vcf_info_list[12:15])
sequence_site = [T7_WGE,Nova_ARD_1,Nova_ARD_2,Nova_BRG]
sequence_dict = Counter(sequence_site)
highest_sequence = sequence_dict.most_common(1)
candidate_sequence = highest_sequence[0][0]
freq_sequence = highest_sequence[0][1]
if freq_sequence > 2:
pcr_free_consensus = candidate_sequence
else:
pcr_free_consensus = 'inconSequenceSite'
gt = [x.split(':')[0] for x in vcf_info_list]
gt = [x.replace('./.','.') for x in gt]
detected_num = 27 - gt.count('.')
gt_remain = [e for e in gt if e not in {'.'}]
gt_set = set(gt_remain)
if len(gt_set) == 1:
same_diff = 'same'
else:
same_diff = 'diff'
tag = ['inconGT','inconSequenceSite']
if (pcr_consensus == pcr_free_consensus) and (pcr_consensus not in tag):
consensus_call = pcr_consensus
elif (pcr_consensus in tag) and (pcr_free_consensus in tag):
consensus_call = 'notAgree'

else:
consensus_call = 'notConsensus'
return consensus_call, detected_num, same_diff

elif (pcr_consensus in tag) and (pcr_free_consensus in tag):
consensus_call = 'filtered'
elif ((pcr_consensus == './.') or (pcr_consensus in tag)) and ((pcr_free_consensus not in tag) and (pcr_free_consensus != './.')):
consensus_call = 'pcr-free-speicifc'
elif ((pcr_consensus != './.') or (pcr_consensus not in tag)) and ((pcr_free_consensus in tag) and (pcr_free_consensus == './.')):
consensus_call = 'pcr-speicifc'
elif (pcr_consensus == '0/0') and (pcr_free_consensus == '0/0'):
consensus_call = '0/0'
else:
consensus_call = 'filtered'


for row in vcf_dat.itertuples():
# length
#alt
if ',' in row.ALT:
alt = row.ALT.split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(row.ALT)
#ref
ref_len = len(row.REF)
if (alt_max > 50) or (ref_len > 50):
pass
else:
# consensus
lcl5_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL5_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL5_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL5_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL5_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL5_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL5_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_3_20170216]
lcl6_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL6_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL6_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL6_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL6_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL6_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL6_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL6_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL6_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL6_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL6_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL6_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL6_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL6_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL6_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL6_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL6_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL6_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL6_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL6_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL6_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL6_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL6_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL6_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL6_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL6_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL6_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL6_3_20170216]
lcl7_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL7_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL7_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL7_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL7_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL7_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL7_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL7_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL7_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL7_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL7_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL7_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL7_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL7_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL7_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL7_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL7_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL7_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL7_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL7_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL7_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL7_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL7_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL7_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL7_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL7_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL7_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL7_3_20170216]
lcl8_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL8_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL8_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL8_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL8_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL8_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL8_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL8_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL8_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL8_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL8_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL8_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL8_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL8_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL8_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL8_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL8_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL8_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL8_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL8_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL8_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL8_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL8_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL8_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL8_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL8_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL8_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL8_3_20170216]
# LCL5
LCL5_consensus_call, LCL5_detected_num, LCL5_same_diff = consensus_call(lcl5_list)
# LCL6
LCL6_consensus_call, LCL6_detected_num, LCL6_same_diff = consensus_call(lcl6_list)
# LCL7
LCL7_consensus_call, LCL7_detected_num, LCL7_same_diff = consensus_call(lcl7_list)
# LCL8
LCL8_consensus_call, LCL8_detected_num, LCL8_same_diff = consensus_call(lcl8_list)
# all data
all_output = row._1 + '\t' + str(row.POS) + '\t' + row.REF + '\t' + row.ALT + '\t' + LCL5_consensus_call + '\t' + str(LCL5_detected_num) + '\t' + LCL5_same_diff + '\t' +\
LCL6_consensus_call + '\t' + str(LCL6_detected_num) + '\t' + LCL6_same_diff + '\t' +\
LCL7_consensus_call + '\t' + str(LCL7_detected_num) + '\t' + LCL7_same_diff + '\t' +\
LCL8_consensus_call + '\t' + str(LCL8_detected_num) + '\t' + LCL8_same_diff + '\n'
all_sample_outfile.write(all_output)
#consensus vcf
one_position = [LCL5_consensus_call,LCL6_consensus_call,LCL7_consensus_call,LCL8_consensus_call]
if ('notConsensus' in one_position) or (((len(set(one_position)) == 1) and ('./.' in set(one_position))) or ((len(set(one_position)) == 1) and ('0/0' in set(one_position))) or ((len(set(one_position)) == 2) and ('0/0' in set(one_position) and ('./.' in set(one_position))))):
pass
else:
consensus_output = row._1 + '\t' + str(row.POS) + '\t' + '.' + '\t' + row.REF + '\t' + row.ALT + '\t' + '.' + '\t' + '.' + '\t' +'.' + '\t' + 'GT' + '\t' + LCL5_consensus_call + '\t' + LCL6_consensus_call + '\t' + LCL7_consensus_call + '\t' + LCL8_consensus_call +'\n'
consensus_outfile.write(consensus_output)









+ 13
- 0
codescripts/variants.calling.qc.txt Ver arquivo

@@ -0,0 +1,13 @@
Sample SNV number INDEL number SNV query INDEL query SNV TP INDEL TP SNV FP INDEL FP SNV FN INDEL FN SNV precision INDEL precision SNV recall INDEL recall SNV F1 INDEL F1
Quartet_DNA_ILM_XTen_NVG_LCL5_1_20170531 342022 52892 322825 42531 270215 32151 52610 10380 3336888 579469 0.84 0.76 0.07 0.05 0.14 0.1
Quartet_DNA_ILM_XTen_NVG_LCL5_2_20170531 342022 52892 322825 42531 270215 32151 52610 10380 3336888 579469 0.84 0.76 0.07 0.05 0.14 0.1
Quartet_DNA_ILM_XTen_NVG_LCL5_3_20170531 342022 52892 322825 42531 270215 32151 52610 10380 3336888 579469 0.84 0.76 0.07 0.05 0.14 0.1
Quartet_DNA_ILM_XTen_NVG_LCL6_1_20170531 285728 45833 268349 36451 229630 27896 38719 8555 3377468 583718 0.86 0.77 0.06 0.05 0.12 0.09
Quartet_DNA_ILM_XTen_NVG_LCL6_2_20170531 285728 45833 268349 36451 229630 27896 38719 8555 3377468 583718 0.86 0.77 0.06 0.05 0.12 0.09
Quartet_DNA_ILM_XTen_NVG_LCL6_3_20170531 285728 45833 268349 36451 229630 27896 38719 8555 3377468 583718 0.86 0.77 0.06 0.05 0.12 0.09
Quartet_DNA_ILM_XTen_NVG_LCL7_1_20170531 323937 49871 305459 39944 261536 30871 43923 9073 3325411 572135 0.86 0.77 0.07 0.05 0.13 0.1
Quartet_DNA_ILM_XTen_NVG_LCL7_2_20170531 323937 49871 305459 39944 261536 30871 43923 9073 3325411 572135 0.86 0.77 0.07 0.05 0.13 0.1
Quartet_DNA_ILM_XTen_NVG_LCL7_3_20170531 323937 49871 305459 39944 261536 30871 43923 9073 3325411 572135 0.86 0.77 0.07 0.05 0.13 0.1
Quartet_DNA_ILM_XTen_NVG_LCL8_1_20170531 307086 45885 288484 36932 234192 27793 54292 9139 3370027 580503 0.81 0.75 0.06 0.05 0.12 0.09
Quartet_DNA_ILM_XTen_NVG_LCL8_2_20170531 307086 45885 288484 36932 234192 27793 54292 9139 3370027 580503 0.81 0.75 0.06 0.05 0.12 0.09
Quartet_DNA_ILM_XTen_NVG_LCL8_3_20170531 307086 45885 288484 36932 234192 27793 54292 9139 3370027 580503 0.81 0.75 0.06 0.05 0.12 0.09

+ 36
- 0
codescripts/vcf2bed.py Ver arquivo

@@ -0,0 +1,36 @@
import re

def position_to_bed(chromo,pos,ref,alt):
# snv
# Start cooridinate BED = start coordinate VCF - 1
# End cooridinate BED = start coordinate VCF

if len(ref) == 1 and len(alt) == 1:
StartPos = int(pos) -1
EndPos = int(pos)
# deletions
# Start cooridinate BED = start coordinate VCF - 1
# End cooridinate BED = start coordinate VCF + (reference length - alternate length)

elif len(ref) > 1 and len(alt) == 1:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
#insertions
# For insertions:
# Start cooridinate BED = start coordinate VCF - 1
# End cooridinate BED = start coordinate VCF + (alternate length - reference length)

else:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(alt) - 1)

return chromo,StartPos,EndPos

def padding_region(chromo,pos1,pos2,padding):
StartPos1 = pos1 - padding
EndPos1 = pos1
StartPos2 = pos2
EndPos2 = pos2 + padding
return chromo,StartPos1,EndPos1,StartPos2,EndPos2

+ 295
- 0
codescripts/voted_by_vcfinfo_mendelianinfo.py Ver arquivo

@@ -0,0 +1,295 @@
from __future__ import division
from glob import glob
import sys, argparse, os
import fileinput
import re
import pandas as pd
from operator import itemgetter
from collections import Counter
from itertools import islice
from numpy import *
import statistics

# input arguments
parser = argparse.ArgumentParser(description="this script is to merge mendelian and vcfinfo, and extract high_confidence_calls")

parser.add_argument('-folder', '--folder', type=str, help='directory that holds all the mendelian info', required=True)
parser.add_argument('-vcf', '--vcf', type=str, help='merged multiple sample vcf', required=True)


args = parser.parse_args()
folder = args.folder
vcf = args.vcf

# input files
folder = folder + '/*.txt'
filenames = glob(folder)
dataframes = []
for filename in filenames:
dataframes.append(pd.read_table(filename,header=None))

dfs = [df.set_index([0, 1]) for df in dataframes]
merged_mendelian = pd.concat(dfs, axis=1).reset_index()
family_name = [i.split('/')[-1].replace('.txt','') for i in filenames]
columns = ['CHROM','POS'] + family_name
merged_mendelian.columns = columns

vcf_dat = pd.read_table(vcf)

merged_df = pd.merge(merged_mendelian, vcf_dat, how='outer', left_on=['CHROM','POS'], right_on = ['#CHROM','POS'])
merged_df = merged_df.fillna('nan')

vcf_header = '''##fileformat=VCFv4.2
##fileDate=20200501
##source=high_confidence_calls_intergration(choppy app)
##reference=GRCh38.d1.vd1
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number mendelian consisitent votes">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Sum depth of all samples">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Sum alternative depth of all samples">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''
# output files
benchmark_LCL5 = open('LCL5_voted.vcf','w')
benchmark_LCL6 = open('LCL6_voted.vcf','w')
benchmark_LCL7 = open('LCL7_voted.vcf','w')
benchmark_LCL8 = open('LCL8_voted.vcf','w')

all_sample_outfile = open('all_sample_information.txt','w')

# write VCF
LCL5_col = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL5_benchmark_calls\n'
LCL6_col = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL6_benchmark_calls\n'
LCL7_col = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL7_benchmark_calls\n'
LCL8_col = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL8_benchmark_calls\n'

benchmark_LCL5.write(vcf_header)
benchmark_LCL5.write(LCL5_col)
benchmark_LCL6.write(vcf_header)
benchmark_LCL6.write(LCL6_col)
benchmark_LCL7.write(vcf_header)
benchmark_LCL7.write(LCL7_col)
benchmark_LCL8.write(vcf_header)
benchmark_LCL8.write(LCL8_col)

# all info
all_info_col = 'CHROM\tPOS\tLCL5_pcr_consensus\tLCL5_pcr_free_consensus\tLCL5_mendelian_num\tLCL5_consensus_call\tLCL5_consensus_alt_seq\tLCL5_alt\tLCL5_dp\tLCL5_detected_num\tLCL6_pcr_consensus\tLCL6_pcr_free_consensus\tLCL6_mendelian_num\tLCL6_consensus_call\tLCL6_consensus_alt_seq\tLCL6_alt\tLCL6_dp\tLCL6_detected_num\tLCL7_pcr_consensus\tLCL7_pcr_free_consensus\tLCL7_mendelian_num\t LCL7_consensus_call\tLCL7_consensus_alt_seq\tLCL7_alt\tLCL7_dp\tLCL7_detected_num\tLCL8_pcr_consensus\tLCL8_pcr_free_consensus\tLCL8_mendelian_num\tLCL8_consensus_call\tLCL8_consensus_alt_seq\tLCL8_alt\tLCL8_dp\tLCL8_detected_num\n'
all_sample_outfile.write(all_info_col)

# function
def decide_by_rep(vcf_list,mendelian_list):
consensus_rep = ''
gt = [x.split(':')[0] for x in vcf_list]
# mendelian consistent?
mendelian_dict = Counter(mendelian_list)
highest_mendelian = mendelian_dict.most_common(1)
candidate_mendelian = highest_mendelian[0][0]
freq_mendelian = highest_mendelian[0][1]
if (candidate_mendelian == '1:1:1') and (freq_mendelian >= 2):
con_loc = [i for i in range(len(mendelian_list)) if mendelian_list[i] == '1:1:1']
gt_con = itemgetter(*con_loc)(gt)
gt_num_dict = Counter(gt_con)
highest_gt = gt_num_dict.most_common(1)
candidate_gt = highest_gt[0][0]
freq_gt = highest_gt[0][1]
if (candidate_gt != './.') and (freq_gt >= 2):
consensus_rep = candidate_gt
elif (candidate_gt == './.') and (freq_gt >= 2):
consensus_rep = 'noGTInfo'
else:
consensus_rep = 'inconGT'
elif (candidate_mendelian == 'nan') and (freq_mendelian >= 2):
consensus_rep = 'noMenInfo'
else:
consensus_rep = 'inconMen'
return consensus_rep

def consensus_call(vcf_info_list,mendelian_list,alt_seq):
pcr_consensus = '.'
pcr_free_consensus = '.'
mendelian_num = '.'
consensus_call = '.'
consensus_alt_seq = '.'
# pcr
SEQ2000 = decide_by_rep(vcf_info_list[0:3],mendelian_list[0:3])
XTen_ARD = decide_by_rep(vcf_info_list[18:21],mendelian_list[18:21])
XTen_NVG = decide_by_rep(vcf_info_list[21:24],mendelian_list[21:24])
XTen_WUX = decide_by_rep(vcf_info_list[24:27],mendelian_list[24:27])
pcr_sequence_site = [SEQ2000,XTen_ARD,XTen_NVG,XTen_WUX]
pcr_sequence_dict = Counter(pcr_sequence_site)
pcr_highest_sequence = pcr_sequence_dict.most_common(1)
pcr_candidate_sequence = pcr_highest_sequence[0][0]
pcr_freq_sequence = pcr_highest_sequence[0][1]
if pcr_freq_sequence > 2:
pcr_consensus = pcr_candidate_sequence
else:
pcr_consensus = 'inconSequenceSite'
# pcr-free
T7_WGE = decide_by_rep(vcf_info_list[3:6],mendelian_list[3:6])
Nova_ARD_1 = decide_by_rep(vcf_info_list[6:9],mendelian_list[6:9])
Nova_ARD_2 = decide_by_rep(vcf_info_list[9:12],mendelian_list[9:12])
Nova_BRG = decide_by_rep(vcf_info_list[12:15],mendelian_list[12:15])
Nova_WUX = decide_by_rep(vcf_info_list[15:18],mendelian_list[15:18])
sequence_site = [T7_WGE,Nova_ARD_1,Nova_ARD_2,Nova_BRG,Nova_WUX]
sequence_dict = Counter(sequence_site)
highest_sequence = sequence_dict.most_common(1)
candidate_sequence = highest_sequence[0][0]
freq_sequence = highest_sequence[0][1]
if freq_sequence > 3:
pcr_free_consensus = candidate_sequence
else:
pcr_free_consensus = 'inconSequenceSite'
# net alt, dp
# alt
AD = [x.split(':')[1] for x in vcf_info_list]
ALT = [x.split(',')[1] for x in AD]
ALT = [int(x) for x in ALT]
ALL_ALT = sum(ALT)
# dp
DP = [x.split(':')[2] for x in vcf_info_list]
DP = [int(x) for x in DP]
ALL_DP = sum(DP)
# detected number
gt = [x.split(':')[0] for x in vcf_info_list]
gt = [x.replace('0/0','.') for x in gt]
gt = [x.replace('./.','.') for x in gt]
detected_num = 27 - gt.count('.')
# decide consensus calls
tag = ['inconGT','noMenInfo','inconMen','inconSequenceSite','noGTInfo']
if (pcr_consensus != '0/0') and (pcr_consensus == pcr_free_consensus) and (pcr_consensus not in tag):
consensus_call = pcr_consensus
gt = [x.split(':')[0] for x in vcf_info_list]
indices = [i for i, x in enumerate(gt) if x == consensus_call]
matched_mendelian = itemgetter(*indices)(mendelian_list)
mendelian_num = matched_mendelian.count('1:1:1')
# Delete multiple alternative genotype to necessary expression
alt_gt = alt_seq.split(',')
if len(alt_gt) > 1:
allele1 = consensus_call.split('/')[0]
allele2 = consensus_call.split('/')[1]
if allele1 == '0':
allele2_seq = alt_gt[int(allele2) - 1]
consensus_alt_seq = allele2_seq
consensus_call = '0/1'
else:
allele1_seq = alt_gt[int(allele1) - 1]
allele2_seq = alt_gt[int(allele2) - 1]
if int(allele1) > int(allele2):
consensus_alt_seq = allele2_seq + ',' + allele1_seq
consensus_call = '1/2'
elif int(allele1) < int(allele2):
consensus_alt_seq = allele1_seq + ',' + allele2_seq
consensus_call = '1/2'
else:
consensus_alt_seq = allele1_seq
consensus_call = '1/1'
else:
consensus_alt_seq = alt_seq
elif (pcr_consensus in tag) and (pcr_free_consensus in tag):
consensus_call = 'filtered'
elif ((pcr_consensus == './.') or (pcr_consensus in tag)) and ((pcr_free_consensus not in tag) and (pcr_free_consensus != './.')):
consensus_call = 'pcr-free-speicifc'
elif ((pcr_consensus != './.') or (pcr_consensus not in tag)) and ((pcr_free_consensus in tag) and (pcr_free_consensus == './.')):
consensus_call = 'pcr-speicifc'
elif (pcr_consensus == '0/0') and (pcr_free_consensus == '0/0'):
consensus_call = '0/0'
else:
consensus_call = 'filtered'
return pcr_consensus, pcr_free_consensus, mendelian_num, consensus_call, consensus_alt_seq, ALL_ALT, ALL_DP, detected_num


for row in merged_df.itertuples():
mendelian_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_1_20191105,row.Quartet_DNA_BGI_T7_WGE_2_20191105,row.Quartet_DNA_BGI_T7_WGE_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_3_20170216]
lcl5_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL5_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL5_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL5_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL5_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL5_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL5_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_3_20170216]
lcl6_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL6_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL6_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL6_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL6_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL6_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL6_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL6_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL6_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL6_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL6_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL6_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL6_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL6_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL6_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL6_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL6_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL6_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL6_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL6_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL6_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL6_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL6_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL6_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL6_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL6_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL6_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL6_3_20170216]
lcl7_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL7_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL7_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL7_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL7_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL7_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL7_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL7_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL7_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL7_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL7_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL7_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL7_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL7_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL7_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL7_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL7_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL7_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL7_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL7_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL7_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL7_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL7_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL7_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL7_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL7_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL7_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL7_3_20170216]
lcl8_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL8_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL8_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL8_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL8_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL8_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL8_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL8_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL8_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL8_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL8_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL8_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL8_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL8_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL8_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL8_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL8_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL8_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL8_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL8_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL8_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL8_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL8_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL8_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL8_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL8_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL8_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL8_3_20170216]
# LCL5
LCL5_pcr_consensus, LCL5_pcr_free_consensus, LCL5_mendelian_num, LCL5_consensus_call, LCL5_consensus_alt_seq, LCL5_alt, LCL5_dp, LCL5_detected_num = consensus_call(lcl5_list,mendelian_list,row.ALT)
if LCL5_mendelian_num != '.':
LCL5_output = row.CHROM + '\t' + str(row.POS) + '\t' + '.' + '\t' + row.REF + '\t' + LCL5_consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' +'VOTED=' + str(LCL5_mendelian_num) + '\t' + 'GT:ALT:DP' + '\t' + LCL5_consensus_call + ':' + str(LCL5_alt) + ':' + str(LCL5_dp) + '\n'
benchmark_LCL5.write(LCL5_output)
# LCL6
LCL6_pcr_consensus, LCL6_pcr_free_consensus, LCL6_mendelian_num, LCL6_consensus_call, LCL6_consensus_alt_seq, LCL6_alt, LCL6_dp, LCL6_detected_num = consensus_call(lcl6_list,mendelian_list,row.ALT)
if LCL6_mendelian_num != '.':
LCL6_output = row.CHROM + '\t' + str(row.POS) + '\t' + '.' + '\t' + row.REF + '\t' + LCL6_consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' +'VOTED=' + str(LCL6_mendelian_num) + '\t' + 'GT:ALT:DP' + '\t' + LCL6_consensus_call + ':' + str(LCL6_alt) + ':' + str(LCL6_dp) + '\n'
benchmark_LCL6.write(LCL6_output)
# LCL7
LCL7_pcr_consensus, LCL7_pcr_free_consensus, LCL7_mendelian_num, LCL7_consensus_call, LCL7_consensus_alt_seq, LCL7_alt, LCL7_dp, LCL7_detected_num = consensus_call(lcl7_list,mendelian_list,row.ALT)
if LCL7_mendelian_num != '.':
LCL7_output = row.CHROM + '\t' + str(row.POS) + '\t' + '.' + '\t' + row.REF + '\t' + LCL7_consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' +'VOTED=' + str(LCL7_mendelian_num) + '\t' + 'GT:ALT:DP' + '\t' + LCL7_consensus_call + ':' + str(LCL7_alt) + ':' + str(LCL7_dp) + '\n'
benchmark_LCL7.write(LCL7_output)
# LCL8
LCL8_pcr_consensus, LCL8_pcr_free_consensus, LCL8_mendelian_num, LCL8_consensus_call, LCL8_consensus_alt_seq, LCL8_alt, LCL8_dp, LCL8_detected_num = consensus_call(lcl8_list,mendelian_list,row.ALT)
if LCL8_mendelian_num != '.':
LCL8_output = row.CHROM + '\t' + str(row.POS) + '\t' + '.' + '\t' + row.REF + '\t' + LCL8_consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' +'VOTED=' + str(LCL8_mendelian_num) + '\t' + 'GT:ALT:DP' + '\t' + LCL8_consensus_call + ':' + str(LCL8_alt) + ':' + str(LCL8_dp) + '\n'
benchmark_LCL8.write(LCL8_output)
# all data
all_output = row.CHROM + '\t' + str(row.POS) + '\t' + LCL5_pcr_consensus + '\t' + LCL5_pcr_free_consensus + '\t' + str(LCL5_mendelian_num) + '\t' + LCL5_consensus_call + '\t' + LCL5_consensus_alt_seq + '\t' + str(LCL5_alt) + '\t' + str(LCL5_dp) + '\t' + str(LCL5_detected_num) + '\t' +\
LCL6_pcr_consensus + '\t' + LCL6_pcr_free_consensus + '\t' + str(LCL6_mendelian_num) + '\t' + LCL6_consensus_call + '\t' + LCL6_consensus_alt_seq + '\t' + str(LCL6_alt) + '\t' + str(LCL6_dp) + '\t' + str(LCL6_detected_num) + '\t' +\
LCL7_pcr_consensus + '\t' + LCL7_pcr_free_consensus + '\t' + str(LCL7_mendelian_num) + '\t' + LCL7_consensus_call + '\t' + LCL7_consensus_alt_seq + '\t' + str(LCL7_alt) + '\t' + str(LCL7_dp) + '\t' + str(LCL7_detected_num) + '\t' +\
LCL8_pcr_consensus + '\t' + LCL8_pcr_free_consensus + '\t' + str(LCL8_mendelian_num) + '\t' + LCL8_consensus_call + '\t' + LCL8_consensus_alt_seq + '\t' + str(LCL8_alt) + '\t' + str(LCL8_dp) + '\t' + str(LCL8_detected_num) + '\n'
all_sample_outfile.write(all_output)


+ 24
- 0
inputs Ver arquivo

@@ -0,0 +1,24 @@
{
"{{ project_name }}.benchmarking_dir": "oss://pgx-result/renluyao/manuscript_v3.0/reference_datasets_v202103/",
"{{ project_name }}.fasta": "GRCh38.d1.vd1.fa",
"{{ project_name }}.BENCHMARKdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-hap:latest",
"{{ project_name }}.LCL6_1": "{{ LCL6_1 }}",
"{{ project_name }}.LCL5_3": "{{ LCL5_3 }}",
"{{ project_name }}.LCL8_2": "{{ LCL8_2 }}",
"{{ project_name }}.disk_size": "500",
"{{ project_name }}.LCL8_1": "{{ LCL8_1 }}",
"{{ project_name }}.LCL6_3": "{{ LCL6_3 }}",
"{{ project_name }}.project": "{{ project }}",
"{{ project_name }}.LCL7_3": "{{ LCL7_3 }}",
"{{ project_name }}.LCL5_1": "{{ LCL5_1 }}",
"{{ project_name }}.SMALLcluster_config": "OnDemand bcs.ps.g.xlarge img-ubuntu-vpc",
"{{ project_name }}.LCL6_2": "{{ LCL6_2 }}",
"{{ project_name }}.BIGcluster_config": "OnDemand bcs.ps.g.2xlarge img-ubuntu-vpc",
"{{ project_name }}.LCL7_2": "{{ LCL7_2 }}",
"{{ project_name }}.LCL5_2": "{{ LCL5_2 }}",
"{{ project_name }}.LCL7_1": "{{ LCL7_1 }}",
"{{ project_name }}.MENDELIANdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/vbt:v1.1",
"{{ project_name }}.LCL8_3": "{{ LCL8_3 }}",
"{{ project_name }}.DIYdocker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.4",
"{{ project_name }}.ref_dir": "oss://pgx-reference-data/GRCh38.d1.vd1/"
}

BIN
tasks/.DS_Store Ver arquivo


+ 81
- 0
tasks/benchmark.wdl Ver arquivo

@@ -0,0 +1,81 @@
task benchmark {
File vcf
File benchmarking_dir
File ref_dir
String sample = basename(vcf,".vcf")
String fasta
String docker
String cluster_config
String disk_size


command <<<
set -o pipefail
set -e
nt=$(nproc)
mkdir -p /cromwell_root/tmp
cp -r ${ref_dir} /cromwell_root/tmp/
cp -r ${benchmarking_dir} /cromwell_root/tmp/

export HGREF=/cromwell_root/tmp/reference_data/GRCh38.d1.vd1.fa

echo -e "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL5" > LCL5_name
echo -e "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL6" > LCL6_name
echo -e "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL7" > LCL7_name
echo -e "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tLCL8" > LCL8_name

if [[ ${sample} =~ "LCL5" ]];then
/opt/hap.py/bin/hap.py /cromwell_root/tmp/reference_datasets_v202103/LCL5.high.confidence.calls.vcf ${vcf} -f /cromwell_root/tmp/reference_datasets_v202103/Quartet.high.confidence.region.v202103.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta}
cat ${vcf} | grep '##' > header
cat ${vcf} | grep -v '#' > body
cat header LCL5_name body > LCL5.vcf
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg bgzip LCL5.vcf -c > ${sample}.reformed.vcf.gz
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg index -f vcf ${sample}.reformed.vcf.gz
elif [[ ${sample} =~ "LCL6" ]]; then
/opt/hap.py/bin/hap.py /cromwell_root/tmp/reference_datasets_v202103/LCL6.high.confidence.calls.vcf ${vcf} -f /cromwell_root/tmp/reference_datasets_v202103/Quartet.high.confidence.region.v202103.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta}
cat ${vcf} | grep '##' > header
cat ${vcf} | grep -v '#' > body
cat header LCL6_name body > LCL6.vcf
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg bgzip LCL6.vcf -c > ${sample}.reformed.vcf.gz
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg index -f vcf ${sample}.reformed.vcf.gz
elif [[ ${sample} =~ "LCL7" ]]; then
/opt/hap.py/bin/hap.py /cromwell_root/tmp/reference_datasets_v202103/LCL7.high.confidence.calls.vcf ${vcf} -f /cromwell_root/tmp/reference_datasets_v202103/Quartet.high.confidence.region.v202103.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta}
cat ${vcf} | grep '##' > header
cat ${vcf} | grep -v '#' > body
cat header LCL7_name body > LCL7.vcf
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg bgzip LCL7.vcf -c > ${sample}.reformed.vcf.gz
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg index -f vcf ${sample}.reformed.vcf.gz
elif [[ ${sample} =~ "LCL8" ]]; then
/opt/hap.py/bin/hap.py /cromwell_root/tmp/reference_datasets_v202103/LCL8.high.confidence.calls.vcf ${vcf} -f /cromwell_root/tmp/reference_datasets_v202103/Quartet.high.confidence.region.v202103.bed --threads $nt -o ${sample} -r ${ref_dir}/${fasta}
cat ${vcf} | grep '##' > header
cat ${vcf} | grep -v '#' > body
cat header LCL8_name body > LCL8.vcf
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg bgzip LCL8.vcf -c > ${sample}.reformed.vcf.gz
/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg index -f vcf ${sample}.reformed.vcf.gz
else
echo "only for quartet samples"
fi
>>>

runtime {
docker:docker
cluster:cluster_config
systemDisk:"cloud_ssd 40"
dataDisk:"cloud_ssd " + disk_size + " /cromwell_root/"
}

output {
File rtg_vcf = "${sample}.reformed.vcf.gz"
File rtg_vcf_index = "${sample}.reformed.vcf.gz.tbi"
File gzip_vcf = "${sample}.vcf.gz"
File gzip_vcf_index = "${sample}.vcf.gz.tbi"
File roc_all_csv = "${sample}.roc.all.csv.gz"
File roc_indel = "${sample}.roc.Locations.INDEL.csv.gz"
File roc_indel_pass = "${sample}.roc.Locations.INDEL.PASS.csv.gz"
File roc_snp = "${sample}.roc.Locations.SNP.csv.gz"
File roc_snp_pass = "${sample}.roc.Locations.SNP.PASS.csv.gz"
File summary = "${sample}.summary.csv"
File extended = "${sample}.extended.csv"
File metrics = "${sample}.metrics.json.gz"
}
}

+ 46
- 0
tasks/mendelian.wdl Ver arquivo

@@ -0,0 +1,46 @@
task mendelian {
File family_vcf
File ref_dir
String family_name = basename(family_vcf,".family.vcf")
String fasta
String docker
String cluster_config
String disk_size
command <<<
export LD_LIBRARY_PATH=/opt/htslib-1.9
nt=$(nproc)

echo -e "${family_name}\tLCL8\t0\t0\t2\t-9\n${family_name}\tLCL7\t0\t0\t1\t-9\n${family_name}\tLCL5\tLCL7\tLCL8\t2\t-9" > ${family_name}.D5.ped

mkdir VBT_D5
/opt/VBT-TrioAnalysis/vbt mendelian -ref ${ref_dir}/${fasta} -mother ${family_vcf} -father ${family_vcf} -child ${family_vcf} -pedigree ${family_name}.D5.ped -outDir VBT_D5 -out-prefix ${family_name}.D5 --output-violation-regions -thread-count $nt

cat VBT_D5/${family_name}.D5_trio.vcf > ${family_name}.D5.vcf

echo -e "${family_name}\tLCL8\t0\t0\t2\t-9\n${family_name}\tLCL7\t0\t0\t1\t-9\n${family_name}\tLCL6\tLCL7\tLCL8\t2\t-9" > ${family_name}.D6.ped

mkdir VBT_D6
/opt/VBT-TrioAnalysis/vbt mendelian -ref ${ref_dir}/${fasta} -mother ${family_vcf} -father ${family_vcf} -child ${family_vcf} -pedigree ${family_name}.D6.ped -outDir VBT_D6 -out-prefix ${family_name}.D6 --output-violation-regions -thread-count $nt

cat VBT_D6/${family_name}.D6_trio.vcf > ${family_name}.D6.vcf
>>>

runtime {
docker:docker
cluster: cluster_config
systemDisk: "cloud_ssd 40"
dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/"
}
output {
File D5_ped = "${family_name}.D5.ped"
File D6_ped = "${family_name}.D6.ped"
Array[File] D5_mendelian = glob("VBT_D5/*")
Array[File] D6_mendelian = glob("VBT_D6/*")
File D5_trio_vcf = "${family_name}.D5.vcf"
File D6_trio_vcf = "${family_name}.D6.vcf"
}
}




+ 35
- 0
tasks/merge_family.wdl Ver arquivo

@@ -0,0 +1,35 @@
task merge_family {
File LCL5_vcf_gz
File LCL5_vcf_idx
File LCL6_vcf_gz
File LCL6_vcf_idx
File LCL7_vcf_gz
File LCL7_vcf_idx
File LCL8_vcf_gz
File LCL8_vcf_idx
String project
String rep
String docker
String cluster_config
String disk_size
command <<<

/opt/rtg-tools/dist/rtg-tools-3.10.1-4d58ead/rtg vcfmerge --force-merge-all -o ${project}_${rep}.family.vcf.gz ${LCL5_vcf_gz} ${LCL6_vcf_gz} ${LCL7_vcf_gz} ${LCL8_vcf_gz}

gunzip ${project}_${rep}.family.vcf.gz

>>>

runtime {
docker:docker
cluster: cluster_config
systemDisk: "cloud_ssd 40"
dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/"
}
output {
File merged_vcf = "${project}_${rep}.family.vcf"
}
}



+ 35
- 0
tasks/merge_mendelian.wdl Ver arquivo

@@ -0,0 +1,35 @@
task merge_mendelian {
File D5_trio_vcf
File D6_trio_vcf
File family_vcf
String family_name = basename(family_vcf,".family.vcf")
String docker
String cluster_config
String disk_size
command <<<
cat ${D5_trio_vcf} | grep -v '##' > ${family_name}.D5.txt
cat ${D6_trio_vcf} | grep -v '##' > ${family_name}.D6.txt
cat ${family_vcf} | grep -v '##' | awk '
BEGIN { OFS = "\t" }
NF > 2 && FNR > 1 {
for ( i=9; i<=NF; i++ ) {
split($i,a,":") ;$i = a[1];
}
}
{ print }
' > ${family_name}.consensus.txt
python /opt/merge_two_family_with_genotype.py -LCL5 ${family_name}.D5.txt -LCL6 ${family_name}.D6.txt -genotype ${family_name}.consensus.txt -family ${family_name}
>>>

runtime {
docker:docker
cluster: cluster_config
systemDisk: "cloud_ssd 40"
dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/"
}
output {
File project_mendelian = "${family_name}.txt"
File project_mendelian_summary = "${family_name}.summary.txt"
}
}

+ 62
- 0
tasks/quartet_mendelian.wdl Ver arquivo

@@ -0,0 +1,62 @@
task quartet_mendelian {
File summary_1
File summary_2
File summary_3
File LCL5_hap_1
File LCL5_hap_2
File LCL5_hap_3
File LCL6_hap_1
File LCL6_hap_2
File LCL6_hap_3
File LCL7_hap_1
File LCL7_hap_2
File LCL7_hap_3
File LCL8_hap_1
File LCL8_hap_2
File LCL8_hap_3
String docker
String project
String cluster_config
String disk_size

command <<<
cat ${summary_1} ${summary_2} ${summary_3} | grep -v 'Family'> mendelian.summary
sed '1iFamily\tTotal_Variants\tMendelian_Concordant_Variants\tMendelian_Concordance_Rate' mendelian.summary > mendelian.txt

cat mendelian.txt | grep 'INDEL' | cut -f4 | grep -v 'Mendelian_Concordance_Rate' | awk '{for(i=1;i<=NF;i++) {sum[i] += $i; sumsq[i] += ($i)^2}}
END {for (i=1;i<=NF;i++) {
printf "%f %f \n", sum[i]/NR, sqrt((sumsq[i]-sum[i]^2/NR)/NR)}
}' >> quartet_indel_aver-std.txt

cat mendelian.txt | grep 'SNV' | cut -f4 | grep -v 'Mendelian_Concordance_Rate' | awk '{for(i=1;i<=NF;i++) {sum[i] += $i; sumsq[i] += ($i)^2}}
END {for (i=1;i<=NF;i++) {
printf "%f %f \n", sum[i]/NR, sqrt((sumsq[i]-sum[i]^2/NR)/NR)}
}' >> quartet_snv_aver-std.txt

cat ${LCL5_hap_1} ${LCL5_hap_2} ${LCL5_hap_3} ${LCL6_hap_1} ${LCL6_hap_2} ${LCL6_hap_3} ${LCL7_hap_1} ${LCL7_hap_2} ${LCL7_hap_3} ${LCL8_hap_1} ${LCL8_hap_2} ${LCL8_hap_3} | grep ALL | sed s'/,/\t/g' > hap.summary
sed '1i\Type\tFilter\tTRUTH.TOTAL\tTRUTH.TP\tTRUTH.FN\tQUERY.TOTAL\tQUERY.FP\tQUERY.UNK\tFP.gt\tMETRIC.Recall\tMETRIC.Precision\tMETRIC.Frac_NA\tMETRIC.F1_Score\tTRUTH.TOTAL.TiTv_ratio\tQUERY.TOTAL.TiTv_ratio\tTRUTH.TOTAL.het_hom_ratio\tQUERY.TOTAL.het_hom_ratio' hap.summary > precision_recall

python /opt/hap_summary.py -hap precision_recall -name ${project}

cat variants.calling.qc.txt | cut -f12- | grep -v 'SNV' | awk '{for(i=1;i<=NF;i++) {sum[i] += $i; sumsq[i] += ($i)^2}}
END {for (i=1;i<=NF;i++) {
printf "%f %f \n", sum[i]/NR, sqrt((sumsq[i]-sum[i]^2/NR)/NR)}
}' >> reference_datasets_aver-std.txt

>>>

runtime {
docker:docker
cluster:cluster_config
systemDisk:"cloud_ssd 40"
dataDisk:"cloud_ssd " + disk_size + " /cromwell_root/"
}
output {
File mendelian_summary = "mendelian.txt"
File snv_aver_std = "quartet_snv_aver-std.txt"
File indel_aver_std = "quartet_indel_aver-std.txt"
File pr = "precision_recall"
File hap_summary = "variants.calling.qc.txt"
File precision_recall_aver_std = "reference_datasets_aver-std.txt"
}
}

+ 310
- 0
workflow.wdl Ver arquivo

@@ -0,0 +1,310 @@
import "./tasks/benchmark.wdl" as benchmark
import "./tasks/mendelian.wdl" as mendelian
import "./tasks/merge_mendelian.wdl" as merge_mendelian
import "./tasks/merge_family.wdl" as merge_family
import "./tasks/quartet_mendelian.wdl" as quartet_mendelian


workflow {{ project_name }} {

File LCL5_1
File LCL6_1
File LCL7_1
File LCL8_1

File LCL5_2
File LCL6_2
File LCL7_2
File LCL8_2

File LCL5_3
File LCL6_3
File LCL7_3
File LCL8_3

String BENCHMARKdocker
String MENDELIANdocker
String DIYdocker


String fasta
File ref_dir

File benchmarking_dir

String project

String disk_size
String BIGcluster_config
String SMALLcluster_config

call benchmark.benchmark as LCL5_1_benchmark {
input:
vcf=LCL5_1,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL5_2_benchmark {
input:
vcf=LCL5_2,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL5_3_benchmark {
input:
vcf=LCL5_3,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL6_1_benchmark {
input:
vcf=LCL6_1,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL6_2_benchmark {
input:
vcf=LCL6_2,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL6_3_benchmark {
input:
vcf=LCL6_3,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL7_1_benchmark {
input:
vcf=LCL7_1,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL7_2_benchmark {
input:
vcf=LCL7_2,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL7_3_benchmark {
input:
vcf=LCL7_3,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}


call benchmark.benchmark as LCL8_1_benchmark {
input:
vcf=LCL8_1,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL8_2_benchmark {
input:
vcf=LCL8_2,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call benchmark.benchmark as LCL8_3_benchmark {
input:
vcf=LCL8_3,
benchmarking_dir=benchmarking_dir,
ref_dir=ref_dir,
fasta=fasta,
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call merge_family.merge_family as merge_family_1 {
input:
LCL5_vcf_gz=LCL5_1_benchmark.rtg_vcf,
LCL5_vcf_idx=LCL5_1_benchmark.rtg_vcf_index,
LCL6_vcf_gz=LCL6_1_benchmark.rtg_vcf,
LCL6_vcf_idx=LCL6_1_benchmark.rtg_vcf_index,
LCL7_vcf_gz=LCL7_1_benchmark.rtg_vcf,
LCL7_vcf_idx=LCL7_1_benchmark.rtg_vcf_index,
LCL8_vcf_gz=LCL8_1_benchmark.rtg_vcf,
LCL8_vcf_idx=LCL8_1_benchmark.rtg_vcf,
project=project,
rep="1",
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call merge_family.merge_family as merge_family_2 {
input:
LCL5_vcf_gz=LCL5_2_benchmark.rtg_vcf,
LCL5_vcf_idx=LCL5_2_benchmark.rtg_vcf_index,
LCL6_vcf_gz=LCL6_2_benchmark.rtg_vcf,
LCL6_vcf_idx=LCL6_2_benchmark.rtg_vcf_index,
LCL7_vcf_gz=LCL7_2_benchmark.rtg_vcf,
LCL7_vcf_idx=LCL7_2_benchmark.rtg_vcf_index,
LCL8_vcf_gz=LCL8_2_benchmark.rtg_vcf,
LCL8_vcf_idx=LCL8_2_benchmark.rtg_vcf,
project=project,
rep="2",
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call merge_family.merge_family as merge_family_3 {
input:
LCL5_vcf_gz=LCL5_3_benchmark.rtg_vcf,
LCL5_vcf_idx=LCL5_3_benchmark.rtg_vcf_index,
LCL6_vcf_gz=LCL6_3_benchmark.rtg_vcf,
LCL6_vcf_idx=LCL6_3_benchmark.rtg_vcf_index,
LCL7_vcf_gz=LCL7_3_benchmark.rtg_vcf,
LCL7_vcf_idx=LCL7_3_benchmark.rtg_vcf_index,
LCL8_vcf_gz=LCL8_3_benchmark.rtg_vcf,
LCL8_vcf_idx=LCL8_3_benchmark.rtg_vcf,
project=project,
rep="3",
docker=BENCHMARKdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size,
}

call mendelian.mendelian as mendelian_1 {
input:
family_vcf=merge_family_1.merged_vcf,
ref_dir=ref_dir,
fasta=fasta,
docker=MENDELIANdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size
}

call mendelian.mendelian as mendelian_2 {
input:
family_vcf=merge_family_2.merged_vcf,
ref_dir=ref_dir,
fasta=fasta,
docker=MENDELIANdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size
}

call mendelian.mendelian as mendelian_3 {
input:
family_vcf=merge_family_3.merged_vcf,
ref_dir=ref_dir,
fasta=fasta,
docker=MENDELIANdocker,
cluster_config=BIGcluster_config,
disk_size=disk_size
}

call merge_mendelian.merge_mendelian as merge_mendelian_1 {
input:
D5_trio_vcf=mendelian_1.D5_trio_vcf,
D6_trio_vcf=mendelian_1.D6_trio_vcf,
family_vcf=merge_family_1.merged_vcf,
docker=DIYdocker,
cluster_config=SMALLcluster_config,
disk_size=disk_size
}

call merge_mendelian.merge_mendelian as merge_mendelian_2 {
input:
D5_trio_vcf=mendelian_2.D5_trio_vcf,
D6_trio_vcf=mendelian_2.D6_trio_vcf,
family_vcf=merge_family_2.merged_vcf,
docker=DIYdocker,
cluster_config=SMALLcluster_config,
disk_size=disk_size
}

call merge_mendelian.merge_mendelian as merge_mendelian_3 {
input:
D5_trio_vcf=mendelian_3.D5_trio_vcf,
D6_trio_vcf=mendelian_3.D6_trio_vcf,
family_vcf=merge_family_3.merged_vcf,
docker=DIYdocker,
cluster_config=SMALLcluster_config,
disk_size=disk_size
}

call quartet_mendelian.quartet_mendelian as quartet_mendelian{
input:
summary_1=merge_mendelian_1.project_mendelian_summary,
summary_2=merge_mendelian_2.project_mendelian_summary,
summary_3=merge_mendelian_3.project_mendelian_summary,
LCL5_hap_1=LCL5_1_benchmark.summary,
LCL5_hap_2=LCL5_2_benchmark.summary,
LCL5_hap_3=LCL5_3_benchmark.summary,
LCL6_hap_1=LCL6_1_benchmark.summary,
LCL6_hap_2=LCL6_2_benchmark.summary,
LCL6_hap_3=LCL6_3_benchmark.summary,
LCL7_hap_1=LCL7_1_benchmark.summary,
LCL7_hap_2=LCL7_2_benchmark.summary,
LCL7_hap_3=LCL7_3_benchmark.summary,
LCL8_hap_1=LCL8_1_benchmark.summary,
LCL8_hap_2=LCL8_2_benchmark.summary,
LCL8_hap_3=LCL8_3_benchmark.summary,
docker=DIYdocker,
project=project,
cluster_config=SMALLcluster_config,
disk_size=disk_size
}

}



Carregando…
Cancelar
Salvar