@@ -1,295 +0,0 @@ | |||
from __future__ import division | |||
import pandas as pd | |||
import sys, argparse, os | |||
import fileinput | |||
import re | |||
# input arguments | |||
parser = argparse.ArgumentParser(description="this script is to get final high confidence calls and information of all replicates") | |||
parser.add_argument('-vcfInfo', '--vcfInfo', type=str, help='The txt file of variants information, this file is named as prefix__variant_quality_location.txt', required=True) | |||
parser.add_argument('-mendelianInfo', '--mendelianInfo', type=str, help='The merged mendelian information of all samples', required=True) | |||
parser.add_argument('-prefix', '--prefix', type=str, help='The prefix of output filenames', required=True) | |||
parser.add_argument('-sample', '--sample_name', type=str, help='which sample of quartet', required=True) | |||
args = parser.parse_args() | |||
vcfInfo = args.vcfInfo | |||
mendelianInfo = args.mendelianInfo | |||
prefix = args.prefix | |||
sample_name = args.sample_name | |||
vcf_header = '''##fileformat=VCFv4.2 | |||
##fileDate=20200331 | |||
##source=high_confidence_calls_intergration(choppy app) | |||
##reference=GRCh38.d1.vd1 | |||
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region"> | |||
##INFO=<ID=DPCT,Number=1,Type=Float,Description="Percentage of detected votes"> | |||
##INFO=<ID=VPCT,Number=1,Type=Float,Description="Percentage of consnesus votes"> | |||
##INFO=<ID=FPCT,Number=1,Type=Float,Description="Percentage of mendelian consisitent votes"> | |||
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> | |||
##FORMAT=<ID=DP,Number=1,Type=Int,Description="Depth"> | |||
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency"> | |||
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Genotype quality"> | |||
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Mapping quality"> | |||
##contig=<ID=chr1,length=248956422> | |||
##contig=<ID=chr2,length=242193529> | |||
##contig=<ID=chr3,length=198295559> | |||
##contig=<ID=chr4,length=190214555> | |||
##contig=<ID=chr5,length=181538259> | |||
##contig=<ID=chr6,length=170805979> | |||
##contig=<ID=chr7,length=159345973> | |||
##contig=<ID=chr8,length=145138636> | |||
##contig=<ID=chr9,length=138394717> | |||
##contig=<ID=chr10,length=133797422> | |||
##contig=<ID=chr11,length=135086622> | |||
##contig=<ID=chr12,length=133275309> | |||
##contig=<ID=chr13,length=114364328> | |||
##contig=<ID=chr14,length=107043718> | |||
##contig=<ID=chr15,length=101991189> | |||
##contig=<ID=chr16,length=90338345> | |||
##contig=<ID=chr17,length=83257441> | |||
##contig=<ID=chr18,length=80373285> | |||
##contig=<ID=chr19,length=58617616> | |||
##contig=<ID=chr20,length=64444167> | |||
##contig=<ID=chr21,length=46709983> | |||
##contig=<ID=chr22,length=50818468> | |||
##contig=<ID=chrX,length=156040895> | |||
''' | |||
vcf_header_all_sample = '''##fileformat=VCFv4.2 | |||
##fileDate=20200331 | |||
##reference=GRCh38.d1.vd1 | |||
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region"> | |||
##INFO=<ID=DPCT,Number=1,Type=Float,Description="Percentage of detected votes"> | |||
##INFO=<ID=VPCT,Number=1,Type=Float,Description="Percentage of consnesus votes"> | |||
##INFO=<ID=FPCT,Number=1,Type=Float,Description="Percentage of mendelian consisitent votes"> | |||
##INFO=<ID=ALL_ALT,Number=1,Type=Float,Description="Sum of alternative reads of all samples"> | |||
##INFO=<ID=ALL_DP,Number=1,Type=Float,Description="Sum of depth of all samples"> | |||
##INFO=<ID=ALL_AF,Number=1,Type=Float,Description="Allele frequency of net alternatice reads and net depth"> | |||
##INFO=<ID=GQ_MEAN,Number=1,Type=Float,Description="Mean of genotype quality of all samples"> | |||
##INFO=<ID=MQ_MEAN,Number=1,Type=Float,Description="Mean of mapping quality of all samples"> | |||
##INFO=<ID=PCR,Number=1,Type=String,Description="Consensus of PCR votes"> | |||
##INFO=<ID=PCR_FREE,Number=1,Type=String,Description="Consensus of PCR-free votes"> | |||
##INFO=<ID=CONSENSUS,Number=1,Type=String,Description="Consensus calls"> | |||
##INFO=<ID=CONSENSUS_SEQ,Number=1,Type=String,Description="Consensus sequence"> | |||
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> | |||
##FORMAT=<ID=DP,Number=1,Type=String,Description="Depth"> | |||
##FORMAT=<ID=AF,Number=1,Type=String,Description="Allele frequency"> | |||
##FORMAT=<ID=GQ,Number=1,Type=String,Description="Genotype quality"> | |||
##FORMAT=<ID=MQ,Number=1,Type=String,Description="Mapping quality"> | |||
##FORMAT=<ID=TWINS,Number=1,Type=String,Description="1 is twins shared, 0 is twins discordant "> | |||
##FORMAT=<ID=TRIO5,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL5 mendelian consistent, 0 is mendelian vioaltion"> | |||
##FORMAT=<ID=TRIO6,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL6 mendelian consistent, 0 is mendelian vioaltion"> | |||
##contig=<ID=chr1,length=248956422> | |||
##contig=<ID=chr2,length=242193529> | |||
##contig=<ID=chr3,length=198295559> | |||
##contig=<ID=chr4,length=190214555> | |||
##contig=<ID=chr5,length=181538259> | |||
##contig=<ID=chr6,length=170805979> | |||
##contig=<ID=chr7,length=159345973> | |||
##contig=<ID=chr8,length=145138636> | |||
##contig=<ID=chr9,length=138394717> | |||
##contig=<ID=chr10,length=133797422> | |||
##contig=<ID=chr11,length=135086622> | |||
##contig=<ID=chr12,length=133275309> | |||
##contig=<ID=chr13,length=114364328> | |||
##contig=<ID=chr14,length=107043718> | |||
##contig=<ID=chr15,length=101991189> | |||
##contig=<ID=chr16,length=90338345> | |||
##contig=<ID=chr17,length=83257441> | |||
##contig=<ID=chr18,length=80373285> | |||
##contig=<ID=chr19,length=58617616> | |||
##contig=<ID=chr20,length=64444167> | |||
##contig=<ID=chr21,length=46709983> | |||
##contig=<ID=chr22,length=50818468> | |||
##contig=<ID=chrX,length=156040895> | |||
''' | |||
# output file | |||
file_name = prefix + '_benchmarking_calls.vcf' | |||
outfile = open(file_name,'w') | |||
all_sample_file_name = prefix + '_all_sample_information.vcf' | |||
all_sample_outfile = open(all_sample_file_name, 'w') | |||
# write VCF | |||
outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t' + sample_name + '_high_confidence_calls\n' | |||
outfile.write(vcf_header) | |||
outfile.write(outputcolumn) | |||
outputcolumn_all_sample = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+ \ | |||
'Quartet_DNA_BGI_SEQ2000_BGI_1_20180518\tQuartet_DNA_BGI_SEQ2000_BGI_2_20180530\tQuartet_DNA_BGI_SEQ2000_BGI_3_20180530\t' + \ | |||
'Quartet_DNA_BGI_T7_WGE_1_20191105\tQuartet_DNA_BGI_T7_WGE_2_20191105\tQuartet_DNA_BGI_T7_WGE_3_20191105\t' + \ | |||
'Quartet_DNA_ILM_Nova_ARD_1_20181108\tQuartet_DNA_ILM_Nova_ARD_2_20181108\tQuartet_DNA_ILM_Nova_ARD_3_20181108\t' + \ | |||
'Quartet_DNA_ILM_Nova_ARD_4_20190111\tQuartet_DNA_ILM_Nova_ARD_5_20190111\tQuartet_DNA_ILM_Nova_ARD_6_20190111\t' + \ | |||
'Quartet_DNA_ILM_Nova_BRG_1_20180930\tQuartet_DNA_ILM_Nova_BRG_2_20180930\tQuartet_DNA_ILM_Nova_BRG_3_20180930\t' + \ | |||
'Quartet_DNA_ILM_Nova_WUX_1_20190917\tQuartet_DNA_ILM_Nova_WUX_2_20190917\tQuartet_DNA_ILM_Nova_WUX_3_20190917\t' + \ | |||
'Quartet_DNA_ILM_XTen_ARD_1_20170403\tQuartet_DNA_ILM_XTen_ARD_2_20170403\tQuartet_DNA_ILM_XTen_ARD_3_20170403\t' + \ | |||
'Quartet_DNA_ILM_XTen_NVG_1_20170329\tQuartet_DNA_ILM_XTen_NVG_2_20170329\tQuartet_DNA_ILM_XTen_NVG_3_20170329\t' + \ | |||
'Quartet_DNA_ILM_XTen_WUX_1_20170216\tQuartet_DNA_ILM_XTen_WUX_2_20170216\tQuartet_DNA_ILM_XTen_WUX_3_20170216\n' | |||
all_sample_outfile.write(vcf_header_all_sample) | |||
all_sample_outfile.write(outputcolumn_all_sample) | |||
# input files | |||
vcf_info = pd.read_table(vcfInfo) | |||
mendelian_info = pd.read_table(mendelianInfo) | |||
merged_df = pd.merge(vcf_info, mendelian_info, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS']) | |||
merged_df = merged_df.fillna('.') | |||
# function | |||
def single_sample_format(format_x,strings_x,strings_y): | |||
gt = '.' | |||
dp = '.' | |||
af = '.' | |||
gq = '.' | |||
mq = '.' | |||
twins = '.' | |||
trio5 = '.' | |||
trio6 = '.' | |||
# GT:DP:AF:GQ:MQ:TWINS:TRIO5:TRIO6 | |||
# strings_x | |||
format_strings = format_x.split(':') | |||
if (strings_x == '.') and (strings_y != '.'): | |||
element_strings_y = str(strings_y).split(':') | |||
gt = '0/0' | |||
dp = '.' | |||
af = '.' | |||
gq = '.' | |||
mq = '.' | |||
twins = element_strings_y[1] | |||
trio5 = element_strings_y[2] | |||
trio6 = element_strings_y[3] | |||
elif (strings_x != '.') and (strings_y == '.'): | |||
element_strings_x = strings_x.split(':') | |||
formatDict = dict(zip(format_strings, element_strings_x)) | |||
gt = formatDict['GT'] | |||
dp = formatDict['DP'] | |||
af = formatDict['AF'] | |||
gq = formatDict['GQ'] | |||
mq = formatDict['MQ'] | |||
twins = '.' | |||
trio5 = '.' | |||
trio6 = '.' | |||
elif (strings_x != '.') and (strings_y != '.'): | |||
element_strings_y = str(strings_y).split(':') | |||
element_strings_x = strings_x.split(':') | |||
formatDict = dict(zip(format_strings, element_strings_x)) | |||
gt = formatDict['GT'] | |||
dp = formatDict['DP'] | |||
af = formatDict['AF'] | |||
gq = formatDict['GQ'] | |||
mq = formatDict['MQ'] | |||
twins = element_strings_y[1] | |||
trio5 = element_strings_y[2] | |||
trio6 = element_strings_y[3] | |||
else: | |||
pass | |||
merged_format = gt + ':' + dp + ':' + af + ':' + gq + ':' + mq + ':' + twins + ':' + trio5 + ':' + trio6 | |||
return(merged_format) | |||
# | |||
for row in merged_df.itertuples(): | |||
vcf_count = row[10:37].count('.') | |||
mendelian_count = row[50:77].count('.') | |||
if vcf_count == mendelian_count: | |||
info = 'location=' + str(row.location) + ';' + str(row.INFO_y) | |||
if row.FILTER_y == 'reproducible': | |||
ref = row.DP - row._42 | |||
FORMAT = row[79] + ':' + str(int(ref)) + ',' + str(int(row._42)) + ':' + str(int(row.DP)) + ':' + str(round(row.AF,2)) + ':' + str(round(row.GQ,2)) + ':' + str(round(row.MQ,2)) | |||
outline1 = str(row._1) + '\t' + str(row.POS) + '\t' + str(row.ID_x) + '\t' + str(row.REF_y) + '\t' + str(row[80]) + '\t' + '.' + '\t' + '.' + '\t' + str(info) + '\t' + 'GT:AD:DP:AF:GQ:MQ' + '\t' + str(FORMAT) + '\n' | |||
outfile.write(outline1) | |||
else: | |||
pass | |||
if row.INFO_x != '.': | |||
if row.AF=='.': | |||
info = 'location=' + str(row.location) + ';' + str(row.INFO_y) + ';' + 'ALL_ALT=' + str(int(row._42)) + ';' + 'ALL_DP=' + str(int(row.DP)) + ';' + 'ALL_AF=' + 'NA' + ';' + 'GQ_MEAN=' + str(row.GQ) + ';' + 'MQ_MEAN=' + str(row.MQ) + ';' + 'PCR=' + str(row[77]) + ';' + 'PCR_FREE=' + str(row[78]) + ';' + 'CONSENSUS=' + str(row[79]) + ';' + 'CONSENSUS_SEQ=' + str(row[80]) | |||
else: | |||
info = 'location=' + str(row.location) + ';' + str(row.INFO_y) + ';' + 'ALL_ALT=' + str(int(row._42)) + ';' + 'ALL_DP=' + str(int(row.DP)) + ';' + 'ALL_AF=' + str(round(float(row.AF),2)) + ';' + 'GQ_MEAN=' + str(row.GQ) + ';' + 'MQ_MEAN=' + str(row.MQ) + ';' + 'PCR=' + str(row[77]) + ';' + 'PCR_FREE=' + str(row[78]) + ';' + 'CONSENSUS=' + str(row[79]) + ';' + 'CONSENSUS_SEQ=' + str(row[80]) | |||
Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5_x, row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5_y) | |||
Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5_x, row.Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5_y) | |||
Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5_x, row.Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5_y) | |||
Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5_x, row.Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5_y) | |||
Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5_x, row.Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5_y) | |||
Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5_x, row.Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5_y) | |||
Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5_x, row.Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5_y) | |||
Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5_x, row.Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5_y) | |||
Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5_x, row.Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5_y) | |||
Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5_x, row.Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5_y) | |||
Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5_x, row.Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5_y) | |||
Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5_x, row.Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5_y) | |||
Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5_x, row.Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5_y) | |||
Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5_x, row.Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5_y) | |||
Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5_x, row.Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5_y) | |||
Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5_x, row.Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5_y) | |||
Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5_x, row.Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5_y) | |||
Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5_x, row.Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5_y) | |||
Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5_x, row.Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5_y) | |||
Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5_x, row.Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5_y) | |||
Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5_x, row.Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5_y) | |||
outline2 = str(row._1) + '\t' + str(row.POS) + '\t' + str(row.ID_x) +'\t' + str(row.REF_x) + '\t' + str(row.ALT_x) + '\t' + '.' + '\t' + '.' + '\t' + str(info) + '\t' + 'GT:DP:AF:GQ:MQ:TWINS:TRIO5:TRIO6' + '\t' \ | |||
+ str(Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5) + '\t' + str(Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5) + '\t' + str(Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5) + '\t' + str(Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5) + '\t' + str(Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5) + '\n' | |||
all_sample_outfile.write(outline2) | |||
else: | |||
info = '.' | |||
Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5_x, row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5_y) | |||
Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5_x, row.Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5_y) | |||
Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5_x, row.Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5_y) | |||
Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5_x, row.Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5_y) | |||
Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5_x, row.Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5_y) | |||
Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5_x, row.Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5_y) | |||
Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5_x, row.Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5_y) | |||
Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5_x, row.Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5_y) | |||
Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5_x, row.Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5_y) | |||
Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5_x, row.Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5_y) | |||
Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5_x, row.Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5_y) | |||
Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5_x, row.Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5_y) | |||
Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5_x, row.Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5_y) | |||
Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5_x, row.Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5_y) | |||
Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5_x, row.Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5_y) | |||
Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5_x, row.Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5_y) | |||
Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5_x, row.Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5_y) | |||
Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5_x, row.Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5_y) | |||
Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5_x, row.Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5_y) | |||
Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5_x, row.Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5_y) | |||
Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5_x, row.Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5_y) | |||
Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5 = single_sample_format(row.FORMAT_x, row.Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5_x, row.Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5_y) | |||
outline2 = str(row._1) + '\t' + str(row.POS) + '\t' + str(row.ID_x) +'\t' + str(row.REF_x) + '\t' + str(row.ALT_x) + '\t' + '.' + '\t' + '.' + '\t' + str(info) + '\t' + 'GT:DP:AF:GQ:MQ:TWINS:TRIO5:TRIO6' + '\t' \ | |||
+ str(Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5) + '\t' + str(Quartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5) + '\t' + str(Quartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_BGI_T7_WGE_1_20191105_LCL5) + '\t' + str(Quartet_DNA_BGI_T7_WGE_2_20191105_LCL5) + '\t' + str(Quartet_DNA_BGI_T7_WGE_3_20191105_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_ARD_1_20181108_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_2_20181108_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_3_20181108_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_ARD_4_20190111_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_5_20190111_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_ARD_6_20190111_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_BRG_1_20180930_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_BRG_2_20180930_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_BRG_3_20180930_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_Nova_WUX_1_20190917_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_WUX_2_20190917_LCL5) + '\t' + str(Quartet_DNA_ILM_Nova_WUX_3_20190917_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_XTen_ARD_1_20170403_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_ARD_2_20170403_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_ARD_3_20170403_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_XTen_NVG_1_20170329_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_NVG_2_20170329_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_NVG_3_20170329_LCL5) + '\t' \ | |||
+ str(Quartet_DNA_ILM_XTen_WUX_1_20170216_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_WUX_2_20170216_LCL5) + '\t' + str(Quartet_DNA_ILM_XTen_WUX_3_20170216_LCL5) + '\n' | |||
all_sample_outfile.write(outline2) | |||
else: | |||
@@ -6,6 +6,8 @@ import pandas as pd | |||
from operator import itemgetter | |||
from collections import Counter | |||
from itertools import islice | |||
from numpy import * | |||
import statistics | |||
# input arguments | |||
parser = argparse.ArgumentParser(description="this script is to count voting number") | |||
@@ -22,13 +24,22 @@ prefix = args.prefix | |||
sample_name = args.sample_name | |||
vcf_header = '''##fileformat=VCFv4.2 | |||
##fileDate=20191224 | |||
##fileDate=20200331 | |||
##source=high_confidence_calls_intergration(choppy app) | |||
##reference=GRCh38.d1.vd1 | |||
##INFO=<ID=DPCT,Number=1,Type=Float,Description="Percentage of detected votes"> | |||
##INFO=<ID=VPCT,Number=1,Type=Float,Description="Percentage of consnesus votes"> | |||
##INFO=<ID=FPCT,Number=1,Type=Float,Description="Percentage of mendelian consisitent votes"> | |||
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region"> | |||
##INFO=<ID=DETECTED,Number=1,Type=Integer,Description="Number of detected votes"> | |||
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number of consnesus votes"> | |||
##INFO=<ID=FAM,Number=1,Type=Integer,Description="Number mendelian consisitent votes"> | |||
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> | |||
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Sum depth of all samples"> | |||
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Sum alternative depth of all samples"> | |||
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency, sum alternative depth / sum depth"> | |||
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Average genotype quality"> | |||
##FORMAT=<ID=QD,Number=1,Type=Float,Description="Average Variant Confidence/Quality by Depth"> | |||
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Average mapping quality"> | |||
##FORMAT=<ID=FS,Number=1,Type=Float,Description="Average Phred-scaled p-value using Fisher's exact test to detect strand bias"> | |||
##FORMAT=<ID=QUALI,Number=1,Type=Float,Description="Average variant quality"> | |||
##contig=<ID=chr1,length=248956422> | |||
##contig=<ID=chr2,length=242193529> | |||
##contig=<ID=chr3,length=198295559> | |||
@@ -54,43 +65,130 @@ vcf_header = '''##fileformat=VCFv4.2 | |||
##contig=<ID=chrX,length=156040895> | |||
''' | |||
vcf_header_all_sample = '''##fileformat=VCFv4.2 | |||
##fileDate=20200331 | |||
##reference=GRCh38.d1.vd1 | |||
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region"> | |||
##INFO=<ID=DUP,Number=1,Type=Flag,Description="Duplicated variant records"> | |||
##INFO=<ID=DETECTED,Number=1,Type=Integer,Description="Number of detected votes"> | |||
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number of consnesus votes"> | |||
##INFO=<ID=FAM,Number=1,Type=Integer,Description="Number mendelian consisitent votes"> | |||
##INFO=<ID=ALL_ALT,Number=1,Type=Float,Description="Sum of alternative reads of all samples"> | |||
##INFO=<ID=ALL_DP,Number=1,Type=Float,Description="Sum of depth of all samples"> | |||
##INFO=<ID=ALL_AF,Number=1,Type=Float,Description="Allele frequency of net alternatice reads and net depth"> | |||
##INFO=<ID=GQ_MEAN,Number=1,Type=Float,Description="Mean of genotype quality of all samples"> | |||
##INFO=<ID=QD_MEAN,Number=1,Type=Float,Description="Average Variant Confidence/Quality by Depth"> | |||
##INFO=<ID=MQ_MEAN,Number=1,Type=Float,Description="Mean of mapping quality of all samples"> | |||
##INFO=<ID=FS_MEAN,Number=1,Type=Float,Description="Average Phred-scaled p-value using Fisher's exact test to detect strand bias"> | |||
##INFO=<ID=QUAL_MEAN,Number=1,Type=Float,Description="Average variant quality"> | |||
##INFO=<ID=PCR,Number=1,Type=String,Description="Consensus of PCR votes"> | |||
##INFO=<ID=PCR_FREE,Number=1,Type=String,Description="Consensus of PCR-free votes"> | |||
##INFO=<ID=CONSENSUS,Number=1,Type=String,Description="Consensus calls"> | |||
##INFO=<ID=CONSENSUS_SEQ,Number=1,Type=String,Description="Consensus sequence"> | |||
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> | |||
##FORMAT=<ID=DP,Number=1,Type=String,Description="Depth"> | |||
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Alternative Depth"> | |||
##FORMAT=<ID=AF,Number=1,Type=String,Description="Allele frequency"> | |||
##FORMAT=<ID=GQ,Number=1,Type=String,Description="Genotype quality"> | |||
##FORMAT=<ID=MQ,Number=1,Type=String,Description="Mapping quality"> | |||
##FORMAT=<ID=TWINS,Number=1,Type=String,Description="1 is twins shared, 0 is twins discordant "> | |||
##FORMAT=<ID=TRIO5,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL5 mendelian consistent, 0 is mendelian vioaltion"> | |||
##FORMAT=<ID=TRIO6,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL6 mendelian consistent, 0 is mendelian vioaltion"> | |||
##contig=<ID=chr1,length=248956422> | |||
##contig=<ID=chr2,length=242193529> | |||
##contig=<ID=chr3,length=198295559> | |||
##contig=<ID=chr4,length=190214555> | |||
##contig=<ID=chr5,length=181538259> | |||
##contig=<ID=chr6,length=170805979> | |||
##contig=<ID=chr7,length=159345973> | |||
##contig=<ID=chr8,length=145138636> | |||
##contig=<ID=chr9,length=138394717> | |||
##contig=<ID=chr10,length=133797422> | |||
##contig=<ID=chr11,length=135086622> | |||
##contig=<ID=chr12,length=133275309> | |||
##contig=<ID=chr13,length=114364328> | |||
##contig=<ID=chr14,length=107043718> | |||
##contig=<ID=chr15,length=101991189> | |||
##contig=<ID=chr16,length=90338345> | |||
##contig=<ID=chr17,length=83257441> | |||
##contig=<ID=chr18,length=80373285> | |||
##contig=<ID=chr19,length=58617616> | |||
##contig=<ID=chr20,length=64444167> | |||
##contig=<ID=chr21,length=46709983> | |||
##contig=<ID=chr22,length=50818468> | |||
##contig=<ID=chrX,length=156040895> | |||
''' | |||
# read in duplication list | |||
dup = pd.read_table(dup_list,header=None) | |||
var_dup = dup[0].tolist() | |||
# output file | |||
file_name = prefix + '_annotated.vcf' | |||
outfile = open(file_name,'w') | |||
benchmark_file_name = prefix + '_voted.vcf' | |||
benchmark_outfile = open(benchmark_file_name,'w') | |||
all_sample_file_name = prefix + '_all_sample_information.vcf' | |||
all_sample_outfile = open(all_sample_file_name,'w') | |||
# write VCF | |||
outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tQuartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5\tQuartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5\tQuartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5\tQuartet_DNA_BGI_T7_WGE_1_20191105_LCL5\tQuartet_DNA_BGI_T7_WGE_2_20191105_LCL5\tQuartet_DNA_BGI_T7_WGE_3_20191105_LCL5\tQuartet_DNA_ILM_Nova_ARD_1_20181108_LCL5\tQuartet_DNA_ILM_Nova_ARD_2_20181108_LCL5\tQuartet_DNA_ILM_Nova_ARD_3_20181108_LCL5\tQuartet_DNA_ILM_Nova_ARD_4_20190111_LCL5\tQuartet_DNA_ILM_Nova_ARD_5_20190111_LCL5\tQuartet_DNA_ILM_Nova_ARD_6_20190111_LCL5\tQuartet_DNA_ILM_Nova_BRG_1_20180930_LCL5\tQuartet_DNA_ILM_Nova_BRG_2_20180930_LCL5\tQuartet_DNA_ILM_Nova_BRG_3_20180930_LCL5\tQuartet_DNA_ILM_Nova_WUX_1_20190917_LCL5\tQuartet_DNA_ILM_Nova_WUX_2_20190917_LCL5\tQuartet_DNA_ILM_Nova_WUX_3_20190917_LCL5\tQuartet_DNA_ILM_XTen_ARD_1_20170403_LCL5\tQuartet_DNA_ILM_XTen_ARD_2_20170403_LCL5\tQuartet_DNA_ILM_XTen_ARD_3_20170403_LCL5\tQuartet_DNA_ILM_XTen_NVG_1_20170329_LCL5\tQuartet_DNA_ILM_XTen_NVG_2_20170329_LCL5\tQuartet_DNA_ILM_XTen_NVG_3_20170329_LCL5\tQuartet_DNA_ILM_XTen_WUX_1_20170216_LCL5\tQuartet_DNA_ILM_XTen_WUX_2_20170216_LCL5\tQuartet_DNA_ILM_XTen_WUX_3_20170216_LCL5' +'\t'+ sample_name+'_pcr'+'\t' + sample_name+'_pcr-free'+ '\t'+ sample_name +'_consensus' + '\t' + sample_name + '_consensus_alt_seq' +'\n' | |||
outfile.write(vcf_header) | |||
outfile.write(outputcolumn) | |||
outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t' + sample_name + '_benchmark_calls\n' | |||
benchmark_outfile.write(vcf_header) | |||
benchmark_outfile.write(outputcolumn) | |||
outputcolumn_all_sample = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+ \ | |||
'Quartet_DNA_BGI_SEQ2000_BGI_1_20180518\tQuartet_DNA_BGI_SEQ2000_BGI_2_20180530\tQuartet_DNA_BGI_SEQ2000_BGI_3_20180530\t' + \ | |||
'Quartet_DNA_BGI_T7_WGE_1_20191105\tQuartet_DNA_BGI_T7_WGE_2_20191105\tQuartet_DNA_BGI_T7_WGE_3_20191105\t' + \ | |||
'Quartet_DNA_ILM_Nova_ARD_1_20181108\tQuartet_DNA_ILM_Nova_ARD_2_20181108\tQuartet_DNA_ILM_Nova_ARD_3_20181108\t' + \ | |||
'Quartet_DNA_ILM_Nova_ARD_4_20190111\tQuartet_DNA_ILM_Nova_ARD_5_20190111\tQuartet_DNA_ILM_Nova_ARD_6_20190111\t' + \ | |||
'Quartet_DNA_ILM_Nova_BRG_1_20180930\tQuartet_DNA_ILM_Nova_BRG_2_20180930\tQuartet_DNA_ILM_Nova_BRG_3_20180930\t' + \ | |||
'Quartet_DNA_ILM_Nova_WUX_1_20190917\tQuartet_DNA_ILM_Nova_WUX_2_20190917\tQuartet_DNA_ILM_Nova_WUX_3_20190917\t' + \ | |||
'Quartet_DNA_ILM_XTen_ARD_1_20170403\tQuartet_DNA_ILM_XTen_ARD_2_20170403\tQuartet_DNA_ILM_XTen_ARD_3_20170403\t' + \ | |||
'Quartet_DNA_ILM_XTen_NVG_1_20170329\tQuartet_DNA_ILM_XTen_NVG_2_20170329\tQuartet_DNA_ILM_XTen_NVG_3_20170329\t' + \ | |||
'Quartet_DNA_ILM_XTen_WUX_1_20170216\tQuartet_DNA_ILM_XTen_WUX_2_20170216\tQuartet_DNA_ILM_XTen_WUX_3_20170216\n' | |||
all_sample_outfile.write(vcf_header_all_sample) | |||
all_sample_outfile.write(outputcolumn_all_sample) | |||
#function | |||
def replace_nan(strings_list): | |||
updated_list = [] | |||
for i in strings_list: | |||
if i == '.': | |||
updated_list.append('.:.:.:.:.:.:.:.:.:.:.:.') | |||
else: | |||
updated_list.append(i) | |||
return updated_list | |||
def detected_percentage(strings): | |||
strings = [x.replace('0/0','.') for x in strings] | |||
def remove_dot(strings_list): | |||
updated_list = [] | |||
for i in strings_list: | |||
if i == '.': | |||
pass | |||
else: | |||
updated_list.append(i) | |||
return updated_list | |||
def detected_number(strings): | |||
gt = [x.split(':')[0] for x in strings] | |||
percentage = round((27 - gt.count('.'))/27,4) | |||
percentage = 27 - gt.count('.') | |||
return(str(percentage)) | |||
def vote_percentage(strings,consensus_call): | |||
strings = [x.replace('.','0/0') for x in strings] | |||
def vote_number(strings,consensus_call): | |||
gt = [x.split(':')[0] for x in strings] | |||
gt = [x.replace('.','0/0') for x in gt] | |||
gt = list(map(gt_uniform,[i for i in gt])) | |||
percentage = round(gt.count(consensus_call)/27,4) | |||
return(str(percentage)) | |||
vote_num = gt.count(consensus_call) | |||
return(str(vote_num)) | |||
def family_vote(strings,consensus_call): | |||
strings = [x.replace('.','0/0') for x in strings] | |||
gt = [x.split(':')[0] for x in strings] | |||
gt = [x.replace('.','0/0') for x in gt] | |||
gt = list(map(gt_uniform,[i for i in gt])) | |||
mendelian = [x[-5:] for x in strings] | |||
mendelian = [':'.join(x.split(':')[1:4]) for x in strings] | |||
indices = [i for i, x in enumerate(gt) if x == consensus_call] | |||
matched_mendelian = itemgetter(*indices)(mendelian) | |||
percentage = round(matched_mendelian.count('1:1:1')/27,4) | |||
return(str(percentage)) | |||
mendelian_num = matched_mendelian.count('1:1:1') | |||
return(str(mendelian_num)) | |||
def gt_uniform(strings): | |||
uniformed_gt = '' | |||
@@ -104,9 +202,9 @@ def gt_uniform(strings): | |||
def decide_by_rep(strings): | |||
consensus_rep = '' | |||
mendelian = [x[-5:] for x in strings] | |||
strings = [x.replace('.','0/0') for x in strings] | |||
mendelian = [':'.join(x.split(':')[1:4]) for x in strings] | |||
gt = [x.split(':')[0] for x in strings] | |||
gt = [x.replace('.','0/0') for x in gt] | |||
# modified gt turn 2/1 to 1/2 | |||
gt = list(map(gt_uniform,[i for i in gt])) | |||
# mendelian consistent? | |||
@@ -125,7 +223,7 @@ def decide_by_rep(strings): | |||
consensus_rep = '0/0' | |||
else: | |||
consensus_rep = 'inconGT' | |||
elif (candidate_mendelian == '.') and (freq_mendelian >= 2): | |||
elif (candidate_mendelian == '') and (freq_mendelian >= 2): | |||
consensus_rep = 'noInfo' | |||
else: | |||
consensus_rep = 'inconMen' | |||
@@ -143,9 +241,9 @@ def main(): | |||
variant_id = '_'.join([strings[0],strings[1]]) | |||
# check if the variants location is duplicated | |||
if variant_id in var_dup: | |||
strings[6] = 'dupVar' | |||
outLine = '\t'.join(strings) + '\t' + '.' +'\t' + '.' + '\t' + 'dupVar' + '\t' + '.' +'\n' | |||
outfile.write(outLine) | |||
strings[7] = strings[7] + ';DUP' | |||
outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(outLine) | |||
else: | |||
# pre-define | |||
pcr_consensus = '.' | |||
@@ -153,6 +251,7 @@ def main(): | |||
consensus_call = '.' | |||
consensus_alt_seq = '.' | |||
# pcr | |||
strings[9:] = replace_nan(strings[9:]) | |||
pcr = itemgetter(*[9,10,11,27,28,29,30,31,32,33,34,35])(strings) | |||
SEQ2000 = decide_by_rep(pcr[0:3]) | |||
XTen_ARD = decide_by_rep(pcr[3:6]) | |||
@@ -169,7 +268,6 @@ def main(): | |||
pcr_consensus = 'inconSequenceSite' | |||
# pcr-free | |||
pcr_free = itemgetter(*[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26])(strings) | |||
#SEQ2000 = decide_by_rep(pcr_free[0]) | |||
T7_WGE = decide_by_rep(pcr_free[0:3]) | |||
Nova_ARD_1 = decide_by_rep(pcr_free[3:6]) | |||
Nova_ARD_2 = decide_by_rep(pcr_free[6:9]) | |||
@@ -187,14 +285,13 @@ def main(): | |||
tag = ['inconGT','noInfo','inconMen','inconSequenceSite'] | |||
if (pcr_consensus == pcr_free_consensus) and (pcr_consensus not in tag) and (pcr_consensus != '0/0'): | |||
consensus_call = pcr_consensus | |||
VPCT = vote_percentage(strings[9:],consensus_call) | |||
strings[7] = 'VPCT=' + VPCT | |||
DPCT = detected_percentage(strings[9:]) | |||
strings[7] = strings[7] + ';DPCT=' + DPCT | |||
FPCT = family_vote(strings[9:],consensus_call) | |||
strings[7] = strings[7] + ';FPCT=' + FPCT | |||
VOTED = vote_number(strings[9:],consensus_call) | |||
strings[7] = strings[7] + ';VOTED=' + VOTED | |||
DETECTED = detected_number(strings[9:]) | |||
strings[7] = strings[7] + ';DETECTED=' + DETECTED | |||
FAM = family_vote(strings[9:],consensus_call) | |||
strings[7] = strings[7] + ';FAM=' + FAM | |||
# Delete multiple alternative genotype to necessary expression | |||
strings[6] = 'reproducible' | |||
alt = strings[4] | |||
alt_gt = alt.split(',') | |||
if len(alt_gt) > 1: | |||
@@ -218,35 +315,90 @@ def main(): | |||
consensus_call = '1/1' | |||
else: | |||
consensus_alt_seq = alt | |||
# GT:DP:ALT:AF:GQ:QD:MQ:FS:QUAL | |||
# GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL:rawGT | |||
# DP | |||
DP = [x.split(':')[4] for x in strings[9:]] | |||
DP = remove_dot(DP) | |||
DP = [int(x) for x in DP] | |||
ALL_DP = sum(DP) | |||
# AF | |||
ALT = [x.split(':')[5] for x in strings[9:]] | |||
ALT = remove_dot(ALT) | |||
ALT = [int(x) for x in ALT] | |||
ALL_ALT = sum(ALT) | |||
ALL_AF = round(ALL_ALT/ALL_DP,2) | |||
# GQ | |||
GQ = [x.split(':')[7] for x in strings[9:]] | |||
GQ = remove_dot(GQ) | |||
GQ = [int(x) for x in GQ] | |||
GQ_MEAN = round(mean(GQ),2) | |||
# QD | |||
QD = [x.split(':')[8] for x in strings[9:]] | |||
QD = remove_dot(QD) | |||
QD = [float(x) for x in QD] | |||
QD_MEAN = round(mean(QD),2) | |||
# MQ | |||
MQ = [x.split(':')[9] for x in strings[9:]] | |||
MQ = remove_dot(MQ) | |||
MQ = [float(x) for x in MQ] | |||
MQ_MEAN = round(mean(MQ),2) | |||
# FS | |||
FS = [x.split(':')[10] for x in strings[9:]] | |||
FS = remove_dot(FS) | |||
FS = [float(x) for x in FS] | |||
FS_MEAN = round(mean(FS),2) | |||
# QUAL | |||
QUAL = [x.split(':')[11] for x in strings[9:]] | |||
QUAL = remove_dot(QUAL) | |||
QUAL = [float(x) for x in QUAL] | |||
QUAL_MEAN = round(mean(QUAL),2) | |||
# benchmark output | |||
output_format = consensus_call + ':' + str(ALL_DP) + ':' + str(ALL_ALT) + ':' + str(ALL_AF) + ':' + str(GQ_MEAN) + ':' + str(QD_MEAN) + ':' + str(MQ_MEAN) + ':' + str(FS_MEAN) + ':' + str(QUAL_MEAN) | |||
outLine = strings[0] + '\t' + strings[1] + '\t' + strings[2] + '\t' + strings[3] + '\t' + consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' + strings[7] + '\t' + 'GT:DP:ALT:AF:GQ:QD:MQ:FS:QUAL' + '\t' + output_format + '\n' | |||
benchmark_outfile.write(outLine) | |||
# all sample output | |||
strings[7] = strings[7] + ';ALL_ALT=' + str(ALL_ALT) + ';ALL_DP=' + str(ALL_DP) + ';ALL_AF=' + str(ALL_AF) \ | |||
+ ';GQ_MEAN=' + str(GQ_MEAN) + ';QD_MEAN=' + str(QD_MEAN) + ';MQ_MEAN=' + str(MQ_MEAN) + ';FS_MEAN=' + str(FS_MEAN) \ | |||
+ ';QUAL_MEAN=' + str(QUAL_MEAN) + ';PCR=' + consensus_call + ';PCR_FREE=' + consensus_call + ';CONSENSUS=' + consensus_call \ | |||
+ ';CONSENSUS_SEQ=' + consensus_alt_seq | |||
all_sample_outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(all_sample_outLine) | |||
elif (pcr_consensus in tag) and (pcr_free_consensus in tag): | |||
consensus_call = 'filtered' | |||
strings[6] = 'filtered' | |||
DPCT = detected_percentage(strings[9:]) | |||
strings[7] = 'DPCT=' + DPCT | |||
DETECTED = detected_number(strings[9:]) | |||
strings[7] = strings[7] + ';DETECTED=' + DETECTED | |||
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call | |||
all_sample_outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(all_sample_outLine) | |||
elif ((pcr_consensus == '0/0') or (pcr_consensus in tag)) and ((pcr_free_consensus not in tag) and (pcr_free_consensus != '0/0')): | |||
consensus_call = 'pcr-free-speicifc' | |||
strings[6] = 'pcr-free-speicifc' | |||
DPCT = detected_percentage(strings[9:]) | |||
strings[7] = 'DPCT=' + DPCT | |||
DETECTED = detected_number(strings[9:]) | |||
strings[7] = strings[7] + ';DETECTED=' + DETECTED | |||
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call | |||
all_sample_outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(all_sample_outLine) | |||
elif ((pcr_consensus != '0/0') or (pcr_consensus not in tag)) and ((pcr_free_consensus in tag) and (pcr_free_consensus == '0/0')): | |||
consensus_call = 'pcr-speicifc' | |||
strings[6] = 'pcr-speicifc' | |||
DPCT = detected_percentage(strings[9:]) | |||
strings[7] = 'DPCT=' + DPCT | |||
DETECTED = detected_number(strings[9:]) | |||
strings[7] = strings[7] + ';DETECTED=' + DETECTED | |||
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call + ';PCR=' + pcr_consensus + ';PCR_FREE=' + pcr_free_consensus | |||
all_sample_outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(all_sample_outLine) | |||
elif (pcr_consensus == '0/0') and (pcr_free_consensus == '0/0'): | |||
consensus_call = 'confirm for parents' | |||
strings[6] = 'confirm for parents' | |||
DPCT = detected_percentage(strings[9:]) | |||
strings[7] = 'DPCT=' + DPCT | |||
consensus_call = 'confirm for parents' | |||
DETECTED = detected_number(strings[9:]) | |||
strings[7] = strings[7] + ';DETECTED=' + DETECTED | |||
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call | |||
all_sample_outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(all_sample_outLine) | |||
else: | |||
consensus_call = 'filtered' | |||
strings[6] = 'filtered' | |||
DPCT = detected_percentage(strings[9:]) | |||
strings[7] = 'DPCT=' + DPCT | |||
# output | |||
outLine = '\t'.join(strings) + '\t' + pcr_consensus +'\t' + pcr_free_consensus + '\t' + consensus_call + '\t' + consensus_alt_seq + '\n' | |||
outfile.write(outLine) | |||
DETECTED = detected_number(strings[9:]) | |||
strings[7] = strings[7] + ';DETECTED=' + DETECTED | |||
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call | |||
all_sample_outLine = '\t'.join(strings) + '\n' | |||
all_sample_outfile.write(all_sample_outLine) | |||
if __name__ == '__main__': | |||
main() |
@@ -24,13 +24,14 @@ vcf_header = '''##fileformat=VCFv4.2 | |||
##fileDate=20200331 | |||
##source=high_confidence_calls_intergration(choppy app) | |||
##reference=GRCh38.d1.vd1 | |||
#FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> | |||
#FORMAT=<ID=TWINS,Number=1,Type=String,Description="1 for sister consistent, 0 for sister different"> | |||
#FORMAT=<ID=TRIO5,Number=1,Type=String,Description="1 for LCL7, LCL8 and LCL5 mendelian consistent, 0 for family violation"> | |||
#FORMAT=<ID=TRIO6,Number=1,Type=String,Description="1 for LCL7, LCL8 and LCL6 mendelian consistent, 0 for family violation"> | |||
##FORMAT=<ID=DP,Number=1,Type=Int,Description="Depth"> | |||
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> | |||
##FORMAT=<ID=TWINS,Number=1,Type=Flag,Description="1 for sister consistent, 0 for sister different"> | |||
##FORMAT=<ID=TRIO5,Number=1,Type=Flag,Description="1 for LCL7, LCL8 and LCL5 mendelian consistent, 0 for family violation"> | |||
##FORMAT=<ID=TRIO6,Number=1,Type=Flag,Description="1 for LCL7, LCL8 and LCL6 mendelian consistent, 0 for family violation"> | |||
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Depth"> | |||
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Alternative Depth"> | |||
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency"> | |||
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Genotype quality"> | |||
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype quality"> | |||
##FORMAT=<ID=QD,Number=1,Type=Float,Description="Variant Confidence/Quality by Depth"> | |||
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Mapping quality"> | |||
##FORMAT=<ID=FS,Number=1,Type=Float,Description="Phred-scaled p-value using Fisher's exact test to detect strand bia"> | |||
@@ -92,10 +93,10 @@ def parse_INFO(info): | |||
return infoDict | |||
# | |||
for row in merged_df.itertuples(): | |||
if row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5 != '.': | |||
if row[18] != '.': | |||
# format | |||
# GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL | |||
FORMAT_x = row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_1_20180518.split(':') | |||
FORMAT_x = row[10].split(':') | |||
ALT = int(FORMAT_x[1].split(',')[1]) | |||
if int(FORMAT_x[2]) != 0: | |||
AF = round(ALT/int(FORMAT_x[2]),2) | |||
@@ -106,11 +107,12 @@ for row in merged_df.itertuples(): | |||
INFO_x['QD'] = '.' | |||
else: | |||
pass | |||
FORMAT = row.Quartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5 + ':' + FORMAT_x[2] + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x) | |||
FORMAT = row[18] + ':' + FORMAT_x[2] + ':' + str(ALT) + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x) | |||
# outline | |||
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_y + '\t' + row.ALT_y + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL' + '\t' + FORMAT + '\n' | |||
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_y + '\t' + row.ALT_y + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL' + '\t' + FORMAT + '\n' | |||
else: | |||
FORMAT_x = row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_1_20180518.split(':') | |||
rawGT = row[10].split(':') | |||
FORMAT_x = row[10].split(':') | |||
ALT = int(FORMAT_x[1].split(',')[1]) | |||
if int(FORMAT_x[2]) != 0: | |||
AF = round(ALT/int(FORMAT_x[2]),2) | |||
@@ -121,7 +123,7 @@ for row in merged_df.itertuples(): | |||
INFO_x['QD'] = '.' | |||
else: | |||
pass | |||
FORMAT = '.:.:.:.' + ':' + FORMAT_x[2] + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x) | |||
FORMAT = '.:.:.:.' + ':' + FORMAT_x[2] + ':' + str(ALT) + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x) + ':' + rawGT[0] | |||
# outline | |||
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_y + '\t' + row.ALT_y + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL' + '\t' + FORMAT + '\n' | |||
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_x + '\t' + row.ALT_x + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL:rawGT' + '\t' + FORMAT + '\n' | |||
outfile.write(outline) |
@@ -1,62 +0,0 @@ | |||
import sys,getopt | |||
import os | |||
import re | |||
import fileinput | |||
def usage(): | |||
print( | |||
""" | |||
Usage: python select_small_variants_supported_by_all_callsets.py -i input_merged_vcf_file -o prefix | |||
This script selects SNPs and Indels supported by all callsets. | |||
Input: | |||
-i a merged vcf file | |||
Output: | |||
-o a vcf file containd the selected SNPs and Indels | |||
""") | |||
# select supported small variants | |||
def process(oneLine): | |||
m = re.match('^\#',oneLine) | |||
if m is not None: | |||
outVCF.write(oneLine) | |||
OUTname.write(oneLine) | |||
else: | |||
line = oneLine.rstrip() | |||
strings = line.strip().split('\t') | |||
gt = [i.split(':', 1)[0] for i in strings[9:len(strings)]] | |||
if all(e == gt[0] for e in gt) and (gt[0] != '.'): | |||
# output the record to vcf | |||
outVCF.write(oneLine) | |||
else: | |||
OUTname.write(oneLine) | |||
opts,args = getopt.getopt(sys.argv[1:],"hi:o:") | |||
for op,value in opts: | |||
if op == "-i": | |||
inputFile=value | |||
elif op == "-o": | |||
prefix=value | |||
elif op == "-h": | |||
usage() | |||
sys.exit() | |||
if len(sys.argv[1:]) < 3: | |||
usage() | |||
sys.exit() | |||
VCFname = prefix + '.vcf' | |||
OUTname = prefix + '_outlier.vcf' | |||
outVCF = open(VCFname,'w') | |||
OUTname = open(OUTname,'w') | |||
for line in fileinput.input(inputFile): | |||
process(line) | |||
outVCF.close() | |||
OUTname.close() | |||
@@ -1,81 +0,0 @@ | |||
from __future__ import division | |||
import sys, argparse, os | |||
import fileinput | |||
import re | |||
import statistics | |||
# input arguments | |||
parser = argparse.ArgumentParser(description="this script is to intergeate vcf information, variants quality and location") | |||
parser.add_argument('-vcf', '--multi_sample_vcf', type=str, help='The VCF file you want to count the voting number', required=True) | |||
parser.add_argument('-prefix', '--prefix', type=str, help='Prefix of output file name', required=True) | |||
args = parser.parse_args() | |||
multi_sample_vcf = args.multi_sample_vcf | |||
prefix = args.prefix | |||
def get_location(info): | |||
repeat = '' | |||
if 'ANN' in info: | |||
strings = info.strip().split(';') | |||
for element in strings: | |||
m = re.match('ANN',element) | |||
if m is not None: | |||
repeat = element.split('=')[1] | |||
else: | |||
repeat = '.' | |||
return repeat | |||
def extract_info_normal(FORMAT,strings): | |||
GQ = [] | |||
MQ = [] | |||
DP = [] | |||
ALT = [] | |||
format_strings = FORMAT.split(':') | |||
for element in strings: | |||
if element == '.': | |||
pass | |||
else: | |||
element_strings = element.split(':') | |||
formatDict = dict(zip(format_strings, element_strings)) | |||
alt = int(formatDict['ALT']) | |||
dp = int(formatDict['DP']) | |||
gq = int(formatDict['GQ']) | |||
mq = float(formatDict['MQ']) | |||
GQ.append(gq) | |||
MQ.append(mq) | |||
DP.append(dp) | |||
ALT.append(alt) | |||
DP_a = sum(DP) | |||
ALT_a = sum(ALT) | |||
if DP_a == 0: | |||
AF_m = 'NA' | |||
else: | |||
AF_m = float(ALT_a/DP_a) | |||
GQ_m = statistics.mean(GQ) | |||
MQ_m = statistics.mean(MQ) | |||
return AF_m,GQ_m,MQ_m,DP_a,ALT_a | |||
file_name = prefix + '_variant_quality_location.txt' | |||
outfile = open(file_name,'w') | |||
outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tQuartet_DNA_BGI_SEQ2000_BGI_1_20180518_LCL5\tQuartet_DNA_BGI_SEQ2000_BGI_2_20180530_LCL5\tQuartet_DNA_BGI_SEQ2000_BGI_3_20180530_LCL5\tQuartet_DNA_BGI_T7_WGE_1_20191105_LCL5\tQuartet_DNA_BGI_T7_WGE_2_20191105_LCL5\tQuartet_DNA_BGI_T7_WGE_3_20191105_LCL5\tQuartet_DNA_ILM_Nova_ARD_1_20181108_LCL5\tQuartet_DNA_ILM_Nova_ARD_2_20181108_LCL5\tQuartet_DNA_ILM_Nova_ARD_3_20181108_LCL5\tQuartet_DNA_ILM_Nova_ARD_4_20190111_LCL5\tQuartet_DNA_ILM_Nova_ARD_5_20190111_LCL5\tQuartet_DNA_ILM_Nova_ARD_6_20190111_LCL5\tQuartet_DNA_ILM_Nova_BRG_1_20180930_LCL5\tQuartet_DNA_ILM_Nova_BRG_2_20180930_LCL5\tQuartet_DNA_ILM_Nova_BRG_3_20180930_LCL5\tQuartet_DNA_ILM_Nova_WUX_1_20190917_LCL5\tQuartet_DNA_ILM_Nova_WUX_2_20190917_LCL5\tQuartet_DNA_ILM_Nova_WUX_3_20190917_LCL5\tQuartet_DNA_ILM_XTen_ARD_1_20170403_LCL5\tQuartet_DNA_ILM_XTen_ARD_2_20170403_LCL5\tQuartet_DNA_ILM_XTen_ARD_3_20170403_LCL5\tQuartet_DNA_ILM_XTen_NVG_1_20170329_LCL5\tQuartet_DNA_ILM_XTen_NVG_2_20170329_LCL5\tQuartet_DNA_ILM_XTen_NVG_3_20170329_LCL5\tQuartet_DNA_ILM_XTen_WUX_1_20170216_LCL5\tQuartet_DNA_ILM_XTen_WUX_2_20170216_LCL5\tQuartet_DNA_ILM_XTen_WUX_3_20170216_LCL5' +'\t'+ 'location' + '\t' + 'AF' + '\t' + 'GQ' + '\t' + 'MQ' + '\t' + 'DP' + '\t' + 'ALT' +'\n' | |||
outfile.write(outputcolumn) | |||
for line in fileinput.input(multi_sample_vcf): | |||
m = re.match('^\#',line) | |||
if m is not None: | |||
pass | |||
else: | |||
line = line.strip() | |||
strings = line.split('\t') | |||
repeat = get_location(strings[7]) | |||
AF,GQ,MQ,DP,ALT = extract_info_normal(strings[8],strings[9:]) | |||
outLine = '\t'.join(strings) + '\t' + repeat +'\t' + str(AF) + '\t' + str(GQ) + '\t' + str(MQ) + '\t' + str(DP) + '\t' + str(ALT) + '\n' | |||
outfile.write(outLine) | |||
@@ -1,52 +0,0 @@ | |||
from __future__ import division | |||
import sys, argparse, os | |||
import fileinput | |||
import re | |||
import statistics | |||
# input arguments | |||
parser = argparse.ArgumentParser(description="this script is to get mapping quality, allele frequency and alternative depth") | |||
parser.add_argument('-vcf', '--normed_vcf', type=str, help='The VCF file you want to used', required=True) | |||
parser.add_argument('-prefix', '--prefix', type=str, help='Prefix of output file name', required=True) | |||
args = parser.parse_args() | |||
normed_vcf = args.normed_vcf | |||
prefix = args.prefix | |||
file_name = prefix + '_variant_quality_location.vcf' | |||
outfile = open(file_name,'w') | |||
for line in fileinput.input(normed_vcf): | |||
m = re.match('^\#',line) | |||
if m is not None: | |||
outfile.write(line) | |||
else: | |||
line = line.strip() | |||
strings = line.split('\t') | |||
strings[8] = strings[8] + ':MQ:ALT:AF' | |||
infos = strings[7].strip().split(';') | |||
## MQ | |||
for element in infos: | |||
m = re.match('MQ=',element) | |||
if m is not None: | |||
MQ = element.split('=')[1] | |||
## ALT | |||
ad = strings[9].split(':')[1] | |||
ad_single = ad.split(',') | |||
ad_single = [int(i) for i in ad_single] | |||
DP = sum(ad_single) | |||
if DP != 0: | |||
ad_single.pop(0) | |||
ALT = sum(ad_single) | |||
AF = ALT/DP | |||
else: | |||
ALT = 0 | |||
AF = 'NA' | |||
outLine = '\t'.join(strings) + ':' + MQ + ':' + str(ALT) + ':' + str(AF) + '\n' | |||
outfile.write(outLine) | |||
@@ -1,6 +1,11 @@ | |||
{ | |||
"{{ project_name }}.LCL7merge.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.fasta": "GRCh38.d1.vd1.fa", | |||
"{{ project_name }}.LCL6bed_annotation.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL7bed_annotation.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL8bed_annotation.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL7votes.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL6votes.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL5VCFrename.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL8mergeInfo.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL6mendelian.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/vbt:v1.1", | |||
@@ -12,14 +17,18 @@ | |||
"{{ project_name }}.disk_size": "150", | |||
"{{ project_name }}.LCL7mergeInfo.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.inputSamplesFile": "{{ inputSamplesFile }}", | |||
"{{ project_name }}.repeat_bed": "oss://pgx-result/renluyao/manuscript/all.repeat.bed", | |||
"{{ project_name }}.LCL6merge.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL6variantsNorm.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/bcftools:v1.9", | |||
"{{ project_name }}.LCL6zipIndex.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL7allInfozipIndex.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL6mergeInfo.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL5votes.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL6mergeInfo.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL5bed_annotation.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL6VCFrename.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.LCL5merge.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.reformVCF.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call:v1.1", | |||
"{{ project_name }}.LCL8votes.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1" | |||
"{{ project_name }}.reformVCF.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/high_confidence_call_manuscript:v1.1", | |||
"{{ project_name }}.LCL5zipIndex.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", | |||
"{{ project_name }}.cluster_config": "OnDemand bcs.b4.xlarge img-ubuntu-vpc", | |||
"{{ project_name }}.LCL8allInfozipIndex.docker": "registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/rtg-tools:latest", |
@@ -1,5 +1,5 @@ | |||
task bed_annotation { | |||
File merged_vcf | |||
File merged_vcf_gz | |||
File merged_vcf_idx | |||
File repeat_bed | |||
String sample | |||
@@ -9,9 +9,9 @@ task bed_annotation { | |||
command <<< | |||
rtg vcfannotate --bed-info=${repeat_bed} -i ${merged_vcf} -o ${sample}.normed.repeatAnno.vcf.gz | |||
rtg vcfannotate --bed-info=${repeat_bed} -i ${merged_vcf_gz} -o ${sample}.mendelian.merged.repeatAnno.vcf.gz | |||
gunzip ${sample}.normed.repeatAnno.vcf.gz | |||
gunzip ${sample}.mendelian.merged.repeatAnno.vcf.gz | |||
>>> | |||
@@ -22,6 +22,6 @@ task bed_annotation { | |||
dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/" | |||
} | |||
output { | |||
File repeat_annotated_vcf = "${sample}.normed.repeatAnno.vcf" | |||
File repeat_annotated_vcf = "${sample}.mendelian.merged.repeatAnno.vcf" | |||
} | |||
} |
@@ -8,9 +8,9 @@ task merge { | |||
command <<< | |||
rtg vcfmerge --force-merge-all --no-gzip -o ${sample}.merged.vcf ${sep=" " family_vcf_gz} | |||
rtg vcfmerge --force-merge-all -o ${sample}.merged.vcf.gz ${sep=" " family_vcf_gz} | |||
cat ${sample}.merged.vcf | grep -v '#' | cut -f1-2 | sed s'/\t/_/g' | sort | uniq -c | sed 's/\s\+/\t/g' | awk '{ if ($1 != 1) { print } }' | cut -f3 > ${sample}.vcf_dup.txt | |||
zcat ${sample}.merged.vcf.gz | grep -v '#' | cut -f1-2 | sed s'/\t/_/g' | sort | uniq -c | sed 's/\s\+/\t/g' | awk '{ if ($1 != 1) { print } }' | cut -f3 > ${sample}.vcf_dup.txt | |||
>>> | |||
@@ -21,7 +21,8 @@ task merge { | |||
dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/" | |||
} | |||
output { | |||
File merged_vcf = "${sample}.merged.vcf" | |||
File merged_vcf_gz = "${sample}.merged.vcf.gz" | |||
File merged_vcf_idx = "${sample}.merged.vcf.gz.tbi" | |||
File vcf_dup = "${sample}.vcf_dup.txt" | |||
} | |||
} |
@@ -1,5 +1,5 @@ | |||
task votes { | |||
File merged_vcf | |||
File repeat_annotated_vcf | |||
File vcf_dup | |||
String sample | |||
String prefix | |||
@@ -8,16 +8,7 @@ task votes { | |||
String disk_size | |||
command <<< | |||
python /opt/high_confidence_call_vote.py -vcf ${merged_vcf} -dup ${vcf_dup} -sample ${sample} -prefix ${prefix} | |||
cat ${prefix}_annotated.vcf | grep -v '##' > ${prefix}.txt | |||
cat ${prefix}.txt | grep '#CHROM' > header | |||
for i in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX | |||
do | |||
cat ${prefix}.txt | grep -w $i | cat header - > ${sample}.$i.mendelian.txt | |||
done | |||
python /opt/high_confidence_call_vote.py -vcf ${repeat_annotated_vcf} -dup ${vcf_dup} -sample ${sample} -prefix ${prefix} | |||
>>> | |||
@@ -28,9 +19,8 @@ task votes { | |||
dataDisk: "cloud_ssd " + disk_size + " /cromwell_root/" | |||
} | |||
output { | |||
File annotated_vcf = "${prefix}_annotated.vcf" | |||
File annotated_txt = "${prefix}.txt" | |||
Array[File] chromo_votes = glob("*.mendelian.txt") | |||
File voted_vcf = "${prefix}_voted.vcf" | |||
File all_sample_vcf = "${prefix}_all_sample_information.vcf" | |||
} | |||
} | |||
@@ -6,11 +6,14 @@ import "./tasks/VCFrename.wdl" as VCFrename | |||
import "./tasks/mergeSister.wdl" as mergeSister | |||
import "./tasks/reformVCF.wdl" as reformVCF | |||
import "./tasks/merge.wdl" as merge | |||
import "./tasks/bed_annotation.wdl" as bed_annotation | |||
import "./tasks/votes.wdl" as votes | |||
workflow {{ project_name }} { | |||
File inputSamplesFile | |||
Array[Array[File]] inputSamples = read_tsv(inputSamplesFile) | |||
File ref_dir | |||
File repeat_bed | |||
String fasta | |||
String cluster_config | |||
String disk_size | |||
@@ -197,6 +200,24 @@ workflow {{ project_name }} { | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call bed_annotation.bed_annotation as LCL5bed_annotation { | |||
input: | |||
merged_vcf_gz=LCL5merge.merged_vcf_gz, | |||
merged_vcf_idx=LCL5merge.merged_vcf_idx, | |||
repeat_bed=repeat_bed, | |||
sample='LCL5', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call votes.votes as LCL5votes { | |||
input: | |||
repeat_annotated_vcf=LCL5bed_annotation.repeat_annotated_vcf, | |||
vcf_dup=LCL5merge.vcf_dup, | |||
sample='LCL5', | |||
prefix='LCL5', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call merge.merge as LCL6merge { | |||
input: | |||
family_vcf_gz=LCL6allInfozipIndex.vcf_gz, | |||
@@ -205,6 +226,24 @@ workflow {{ project_name }} { | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call bed_annotation.bed_annotation as LCL6bed_annotation { | |||
input: | |||
merged_vcf_gz=LCL6merge.merged_vcf_gz, | |||
merged_vcf_idx=LCL6merge.merged_vcf_idx, | |||
repeat_bed=repeat_bed, | |||
sample='LCL6', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call votes.votes as LCL6votes { | |||
input: | |||
repeat_annotated_vcf=LCL6bed_annotation.repeat_annotated_vcf, | |||
vcf_dup=LCL6merge.vcf_dup, | |||
sample='LCL6', | |||
prefix='LCL6', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call merge.merge as LCL7merge { | |||
input: | |||
family_vcf_gz=LCL7allInfozipIndex.vcf_gz, | |||
@@ -213,6 +252,24 @@ workflow {{ project_name }} { | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call bed_annotation.bed_annotation as LCL7bed_annotation { | |||
input: | |||
merged_vcf_gz=LCL7merge.merged_vcf_gz, | |||
merged_vcf_idx=LCL7merge.merged_vcf_idx, | |||
repeat_bed=repeat_bed, | |||
sample='LCL7', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call votes.votes as LCL7votes { | |||
input: | |||
repeat_annotated_vcf=LCL7bed_annotation.repeat_annotated_vcf, | |||
vcf_dup=LCL7merge.vcf_dup, | |||
sample='LCL7', | |||
prefix='LCL7', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call merge.merge as LCL8merge { | |||
input: | |||
family_vcf_gz=LCL8allInfozipIndex.vcf_gz, | |||
@@ -221,4 +278,22 @@ workflow {{ project_name }} { | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call bed_annotation.bed_annotation as LCL8bed_annotation { | |||
input: | |||
merged_vcf_gz=LCL8merge.merged_vcf_gz, | |||
merged_vcf_idx=LCL8merge.merged_vcf_idx, | |||
repeat_bed=repeat_bed, | |||
sample='LCL8', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
call votes.votes as LCL8votes { | |||
input: | |||
repeat_annotated_vcf=LCL8bed_annotation.repeat_annotated_vcf, | |||
vcf_dup=LCL8merge.vcf_dup, | |||
sample='LCL8', | |||
prefix='LCL8', | |||
cluster_config=cluster_config, | |||
disk_size=disk_size | |||
} | |||
} |