|
|
@@ -19,90 +19,319 @@ choppy install lizhihui/RNAseq_germline_datapotal |
|
|
|
|
|
|
|
## App概述——中华家系1号标准物质介绍 |
|
|
|
|
|
|
|
建立高通量全基因组测序的生物计量和质量控制关键技术体系,是保障测序数据跨技术平台、跨实验室可比较、相关研究结果可重复、数据可共享的重要关键共性技术。建立国家基因组标准物质和基准数据集,突破基因组学的生物计量技术,是将测序技术转化成临床应用的重要环节与必经之路,目前国际上尚属空白。中国计量科学研究院与复旦大学、复旦大学泰州健康科学研究院共同研制了人源中华家系1号基因组标准物质(**Quartet,一套4个样本,编号分别为LCL5,LCL6,LCL7,LCL8,其中LCL5和LCL6为同卵双胞胎女儿,LCL7为父亲,LCL8为母亲**),以及相应的全基因组测序序列基准数据集(“量值”),为衡量基因序列检测准确与否提供一把“标尺”,成为保障基因测序数据可靠性的国家基准。人源中华家系1号基因组标准物质来源于泰州队列同卵双生双胞胎家庭,从遗传结构上体现了我国南北交界的人群结构特征,同时家系的设计也为“量值”的确定提供了遗传学依据。 |
|
|
|
建立高通量转录组测序的生物计量和质量控制关键技术体系,是保障转录组测序数据跨技术平台、跨实验室可比较、相关研究结果可重复、数据可共享的重要关键共性技术。建立国家转录组标准物质和基准数据集,突破基因组学的生物计量技术,是将测序技术转化成临床应用的重要环节与必经之路,目前国际上尚属空白。中国计量科学研究院与复旦大学、复旦大学泰州健康科学研究院共同研制了人源中华家系1号基因组标准物质(**Quartet,一套4个样本,编号分别为LCL5,LCL6,LCL7,LCL8,其中LCL5和LCL6为同卵双胞胎女儿,LCL7为父亲,LCL8为母亲**),以及相应的全基因组测序序列基准数据集(“量值”),为衡量基因序列检测准确与否提供一把“标尺”,成为保障基因测序数据可靠性的国家基准。人源中华家系1号转录组标准物质来源于泰州队列同卵双生双胞胎家庭,从遗传结构上体现了我国南北交界的人群结构特征,同时家系的设计也为“量值”的确定提供了遗传学依据。 |
|
|
|
|
|
|
|
中华家系1号RNA标准物质通过21个批次RNA标准物质的测序,整合集成了参考数据集,从而建立了一些依赖参考的质量控制指标。 |
|
|
|
|
|
|
|
在原始数据及比对数据层面,我们关注了数据量、GC含量、污染情况、比对率、比对位置分布等对测序可能会产生影响的指标,通过计算观察这些指标,我们可以一定程度上了解测序数据的质量。在测序数据表达情况层面,分别在定性和定量层面对基因检测表达水平进行了多角度的评价。通过从10个方面评估21个数据集的数据质量后我们构建了基于高置信度的已检测、未检测基因集、差异表达基因等参考数据集。通过这些指标,我们可以对新产生的测序数据进行合理的评价。 |
|
|
|
|
|
|
|
中华家系1号RNA标准物质的利用集成的参考数据集,我们对所有21个数据集进行了基准测试,以建立一些依赖参考的质量控制指标。 |
|
|
|
该Quality_control APP用于转录组测序(RNA Sequencing,RNA-Seq)数据的质量评估,包括原始数据及比对数据质控和基因表达数据质控。 |
|
|
|
|
|
|
|
在基因检测水平上,我们基于高置信度的已检测和未检测基因集介绍了检测灵敏度和特异性。对于大多数文库,我们观察到高水平的灵敏度(〜0.97)和特异性(〜0.97),除了几个主要来自同一批次(R_ILM_L4_B1)的文库,该文库在检测重现性评估中也得分较低。 (图6A)。 |
|
|
|
## 流程与参数 |
|
|
|
|
|
|
|
 |
|
|
|
|
|
|
|
### 1.原始数据质量和数据比对质量 |
|
|
|
|
|
|
|
然后,在表达水平上,建立了两个指标,以从定性和定量的角度评估歧视能力。我们使用相对表达量的一致比例作为定性估计量,该估计量的重点是从某个数据集计算出的倍数变化水平是否落在参考值的SD区间的平均值的正负2倍的范围之内和负值之内。 ,我们计算了从测试数据集得出的倍数变化与参考数据集中的倍数变化的相关性(图6B)。这两个指标具有不同范围的明确线性关系。相关得分高于0.9,而一致比率从0.68到0.98(平均0.91)变化。在21个数据集中,一个数据集(R_ILM_L5_B3)在基于参考倍数变化和DEG的度量中表现较低(图6B和6C)。批处理内质控与参考数据相比6个“低质量”数据集与15个“高质量”数据集的相似性较低的假设是,将它们从参考数据集成中排除。为了减少这种偏差,我们进行了10次交叉验证测试。简而言之,在每个回合中,仅包含15个数据集中的12个以构建参考数据集,剩下的3个被视为测试集以及6个“低质量”数据集。高配置数据集和低配置数据集的交叉验证之间的比较表明,基于参考的质量绩效与数据质量的本质更相关,而不是是否参与生成参考值,从而验证了在此进行的参考数据集的价值研究(图S7)。 |
|
|
|
#### [Fastqc](<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) v0.11.5 |
|
|
|
|
|
|
|
结合上述所有主要质量指标(包括批内指标和依赖参考的指标),我们从10个方面报告了21个数据集的数据质量(图6D)。在poly-A和Ribo-Zero数据集之间观察到明显的质量特征,即大多数poly-A数据集在与数据可重复性相关的指标(例如1 / CV,CTR)中均获得了高分,而Ribo-Zero数据集在样品区分方面表现更好。此外,由于我们使用了多个QC指标,因此估计了各个QC指标的一致性,显示出中等程度的相关性(Spearman相关性的均值:0.61),表明这些指标的估计既一致又互补(图6E)。 |
|
|
|
FastQC是一个常用的测序原始数据的质控软件,主要包括12个模块,具体请参考[Fastqc模块详情](<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/>)。 |
|
|
|
|
|
|
|
表1汇总了所有QC指标,包括本研究中的批内指标和依赖参考的指标,以及它们的参考阈值。 |
|
|
|
```bash |
|
|
|
fastqc -t <threads> -o <output_directory> <fastq_file> |
|
|
|
``` |
|
|
|
|
|
|
|
#### [Fastq Screen](<https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/>) 0.12.0 |
|
|
|
|
|
|
|
Fastq Screen是检测测序原始数据中是否引⼊入其他物种,或是接头引物等污染,⽐比如,如果测序样本 |
|
|
|
是⼈人类,我们期望99%以上的reads匹配到⼈人类基因组,10%左右的reads匹配到与⼈人类基因组同源性 |
|
|
|
较⾼高的⼩小⿏鼠上。如果有过多的reads匹配到Ecoli或者Yeast,要考虑是否在培养细胞的时候细胞系被污染,或者建库时⽂文库被污染。 |
|
|
|
|
|
|
|
```bash |
|
|
|
fastq_screen --aligner <aligner> --conf <config_file> --top <number_of_reads> --threads <threads> <fastq_file> |
|
|
|
``` |
|
|
|
|
|
|
|
`--conf` conifg 文件主要输入了多个物种的fasta文件地址,可根据自己自己的需求下载其他物种的fasta文件加入分析 |
|
|
|
|
|
|
|
`--top`一般不需要对整个fastq文件进行检索,取前100000行 |
|
|
|
|
|
|
|
#### [Qualimap](<http://qualimap.bioinfo.cipf.es/>) 2.0.0 |
|
|
|
|
|
|
|
该Quality_control APP用于转录组测序(RNA Sequencing,RNA-Seq)数据的质量评估,包括原始数据质控、比对数据质控和基因表达数据质控。 |
|
|
|
Qualimap是一个计算数据比对质量的软件,包含测序数据比对后的bam文件比对质量的结果。 |
|
|
|
|
|
|
|
## 流程与参数 |
|
|
|
```bash |
|
|
|
qualimap bamqc -bam <bam_file> -outformat PDF:HTML -nt <threads> -outdir <output_directory> --java-mem-size=32G |
|
|
|
qualimap rnaseq -bam ${bam} -outformat HTML -outdir ${bamname}_RNAseq -gtf ${gtf} -pe --java-mem-size=10G |
|
|
|
``` |
|
|
|
|
|
|
|
###2.数据表达质量 |
|
|
|
|
|
|
|
``` |
|
|
|
Rscript |
|
|
|
``` |
|
|
|
|
|
|
|
分析采用实验室内部使用的代码,对从以下10个方面评估数据质量: |
|
|
|
|
|
|
|
 |
|
|
|
- Number of detected genes |
|
|
|
- Detection Jaccard index (JI) |
|
|
|
- Coefficient of variation (CV) |
|
|
|
- Correlation of technical replicates (CTR) |
|
|
|
- Sensitivity of detection |
|
|
|
- Specificity of detection |
|
|
|
- Consistency ratio of relative expression |
|
|
|
- Correlation of relative log2FC |
|
|
|
- Sensitivity of DEGs |
|
|
|
- Specificity of DEGs |
|
|
|
- Signal-to-noise Ratio (SNR) ) |
|
|
|
|
|
|
|
## App输入文件 |
|
|
|
inputSamplesFile |
|
|
|
|
|
|
|
``` |
|
|
|
#read1 #read2 #sample_id #adapter_sequence #adapter_sequence_r2 |
|
|
|
#待更新 |
|
|
|
``` |
|
|
|
|
|
|
|
read1 是阿里云上fastq read1的地址 |
|
|
|
|
|
|
|
read2 是阿里云上fastq read2的地址 |
|
|
|
|
|
|
|
sample_id 是指样本的命名 |
|
|
|
参数设置: |
|
|
|
|
|
|
|
若有修改需求,请在input文件中添加新的行 |
|
|
|
|
|
|
|
#### [fastp](https://github.com/OpenGene/fastp) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| ------------------------- | ------------------------------------------------------- | ------------------------------------------------------------ | |
|
|
|
| fastp_docker | fastp软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/fastp:0.19.6 | |
|
|
|
| fastp_cluster | fastp软件使用服务器 | OnDemand bcs.b2.3xlarge img-ubuntu-vpc | |
|
|
|
| trim_front1 | 修剪read1前面多少个碱基 | 0 | |
|
|
|
| trim_tail1 | 修剪read1尾部有多少个碱基 | 0 | |
|
|
|
| max_len1 | 修剪read1的尾部使其与max_len1一样长 | 0 | |
|
|
|
| trim_front2 | 修剪read2前面多少个碱基 | 0 | |
|
|
|
| trim_tail2 | 修整read2尾部多少个碱基 | 0 | |
|
|
|
| max_len2 | 修剪read2的尾部,使其与max_len2一样长 | 0 | |
|
|
|
| adapter_sequence | R1端使用接头 | AGATCGGAAGAGCACACGTCTGAACTCCAGTCA | |
|
|
|
| adapter_sequence_r2 | R2端使用接头 | AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT | |
|
|
|
| disable_adapter_trimming | 是否进行接头过滤(非0则不过滤) | 0 | |
|
|
|
| length_required | 接头过滤参数:短于length_required的读取将被丢弃 | 50 | |
|
|
|
| length_required1 | 接头过滤参数: 默认值20表示phred quality> = Q20是合格的 | 20 | |
|
|
|
| UMI | 是否使用UMI接头(非0则使用) | 0 | |
|
|
|
| umi_len | UMI接头参数: | 0 | |
|
|
|
| umi_loc | UMI接头参数:接头位置 | umi_loc | |
|
|
|
| disable_quality_filtering | 是否进行碱基质量过滤(非0则过滤) | 1 | |
|
|
|
| qualified_quality_phred | 碱基质量过滤参数:允许不合格的百分比 | 20 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#### [HISAT2](http://daehwankimlab.github.io/hisat2/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| ---------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | |
|
|
|
| hisat2_docker | hisat2软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/hisat2:v2.1.0-2 | |
|
|
|
| hisat2_cluster | hisat2软件使用服务器 | OnDemand | |
|
|
|
| idx_prefix | 比对文件类型 | genome_snp_tran | |
|
|
|
| idx | 比对文件地址 | oss://pgx-reference-data/reference/hisat2/grch38_snp_tran/ | |
|
|
|
| fasta | 比对文件名称 | GRCh38.d1.vd1.fa | |
|
|
|
| pen_cansplice | 为每对规范的剪接位点(例如GT / AG)设置惩罚 | 0 | |
|
|
|
| pen_noncansplice | 设置每对非规范剪接位点(例如非GT / AG)的惩罚 | 3 | |
|
|
|
| pen_intronlen | 设置长内含子的罚分,因此与较短的内含子相比,较短的内含子优先 | G,-8,1 | |
|
|
|
| min_intronlen | 设置最小内含子长度 | 30 | |
|
|
|
| max_intronlen | 设置最大内含子长度 | 500000 | |
|
|
|
| maxins | 有效的配对末端比对的最大片段长度 | 500 | |
|
|
|
| minins | 有效的配对末端比对的最小片段长度 | 0 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####[Samtools](http://www.htslib.org/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| ---------------- | ---------------------- | ------------------------------------------------------------ | |
|
|
|
| samtools_docker | samtools软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/samtools:v1.3.1 | |
|
|
|
| samtools_cluster | samtools软件使用服务器 | OnDemand bcs.a2.large img-ubuntu-vpc, | |
|
|
|
| insert_size | 最大插入读长 | 8000 | |
|
|
|
|
|
|
|
adapter_sequence 是R1端需要去除的接头 |
|
|
|
|
|
|
|
adapter_sequence_r2 是R2端需要去除的接头 |
|
|
|
|
|
|
|
所有上传的文件应有规范的命名 |
|
|
|
####[StringTie](https://ccb.jhu.edu/software/stringtie/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| ---------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | |
|
|
|
| stringtie_docker | stringtie软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/stringtie:v1.3.4 | |
|
|
|
| stringtie_cluster | stringtie软件使用服务器 | OnDemand bcs.a2.large img-ubuntu-vpc, | |
|
|
|
| gtf | 组装gtf文件地址 | oss://pgx-reference-data/reference/annotation/Homo_sapiens.GRCh38.93.gtf | |
|
|
|
| minimum_length_allowed_for_the_predicted_transcripts | 设置预测成绩单所允许的最小长度 | 200 | |
|
|
|
| minimum_isoform_abundance | 将预测的转录本的最小同工型丰度设置为在给定基因座处组装的最丰富的转录本的一部分 | 0.01 | |
|
|
|
| Junctions_no_spliced_reads | 没有拼接的接头在两端至少与该数量的碱基对齐,这些接头被过滤掉 | 10 | |
|
|
|
| maximum_fraction_of_muliplelocationmapped_reads | 设置允许在给定基因座处存在的多核苷酸位置映射的读数的最大分数 | 0.95 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#### [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| --------------------- | -------------------- | ------------------------------------------------------------ | |
|
|
|
| fastqc_cluster_config | fastqc软件使用服务器 | OnDemand bcs.b2.3xlarge img-ubuntu-vpc | |
|
|
|
| fastqc_docker | fastqc软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/fastqc:v0.11.5 | |
|
|
|
| fastqc_disk_size | fastqc文件盘大小 | 150 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#### [Qualimap](http://qualimap.bioinfo.cipf.es/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| ----------------------------- | ---------------------------- | ------------------------------------------------------------ | |
|
|
|
| qualimapBAMqc_docker | qualimapBAMqc软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/qualimap:2.0.0 | |
|
|
|
| qualimapBAMqc_cluster_config | qualimapBAMqc软件使用服务器 | OnDemand bcs.a2.7xlarge img-ubuntu-vpc | |
|
|
|
| qualimapBAMqc_disk_size | qualimapBAMqc软件版本信息 | 500 | |
|
|
|
| qualimapRNAseq_docker | qualimapRNAseq软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/qualimap:2.0.0 | |
|
|
|
| qualimapRNAseq_cluster_config | qualimapRNAseq软件使用服务器 | OnDemand bcs.a2.7xlarge img-ubuntu-vpc | |
|
|
|
| qualimapRNAseq_disk_size | qualimapRNAseq软件版本信息 | 500 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#### [FastQ Screen](https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| -------------------------- | --------------------------- | ------------------------------------------------------------ | |
|
|
|
| fastqscreen_docker | fastqscreen软件版本信息 | registry.cn-shanghai.aliyuncs.com/pgx-docker-registry/fastqscreen:0.12.0 | |
|
|
|
| fastqscreen_cluster_config | fastqscreen软件使用服务器 | OnDemand bcs.b2.3xlarge img-ubuntu-vpc | |
|
|
|
| screen_ref_dir | fastqscreen软件序列地址 | oss://pgx-reference-data/fastq_screen_reference/ | |
|
|
|
| fastq_screen_conf | fastqscreen软件序列索引地址 | oss://pgx-reference-data/fastq_screen_reference/fastq_screen.conf | |
|
|
|
| fastqscreen_disk_size | fastqscreen文件盘大小 | 200 | |
|
|
|
| ref_dir | fastqscreen序列索引地址 | oss://chinese-quartet/quartet-storage-data/reference_data/ | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#### [MultiQC](https://multiqc.info/) |
|
|
|
|
|
|
|
| 参数名 | 参数解释 | 默认值 | |
|
|
|
| ---------------------- | --------------------- | ------------------------------------------------------------ | |
|
|
|
| multiqc_cluster_config | multiqc软件版本信息 | OnDemand bcs.b2.3xlarge img-ubuntu-vpc | |
|
|
|
| multiqc_docker | multiqc软件使用服务器 | registry-vpc.cn-shanghai.aliyuncs.com/pgx-docker-registry/multiqc:v1.8 | |
|
|
|
| multiqc_disk_size | multiqc文件盘大小 | 100 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## App输出文件 |
|
|
|
1.上游质控参数 |
|
|
|
|
|
|
|
| 列名 | 说明 | 范围 | |
|
|
|
| -------------------------- | ---- | ---- | |
|
|
|
| SampleID | | | |
|
|
|
| #Date | | | |
|
|
|
| #LibraryPrep | | | |
|
|
|
| Replicate | | | |
|
|
|
| Sample | | | |
|
|
|
| #SequenceMachine | | | |
|
|
|
| #SequenceSite | | | |
|
|
|
| #SequenceTech | | | |
|
|
|
raw reads |
|
|
|
| Total_Reads_After_Trimming | | | |
|
|
|
| GC_content |* | | |
|
|
|
| Human.percentage | | | |
|
|
|
| #ERCC.percentage | | | |
|
|
|
| EColi.percentage | | | |
|
|
|
| Adapter.percentage | | | |
|
|
|
| #Vector.percentage | | | |
|
|
|
| rRNA.percentage | | | |
|
|
|
| Virus.percentage | | | |
|
|
|
| Yeast.percentage | | | |
|
|
|
| Mitoch.percentage | | | |
|
|
|
| Phix.percentage | | | |
|
|
|
| No.hits.percentage | | | |
|
|
|
| GC_content_bamqc | | | |
|
|
|
| Mapping_Ratio | * | | |
|
|
|
| Insert_size_median | * | | |
|
|
|
| Insert_size_peak | * | | |
|
|
|
error rate |
|
|
|
average length |
|
|
|
3’5‘ gene cover |
|
|
|
duplication |
|
|
|
strand bias |
|
|
|
|
|
|
|
|
|
|
|
2.下游质控参数 |
|
|
|
|
|
|
|
#### 1. results_upstream_total.csv |
|
|
|
|
|
|
|
| library | date | sample | replicate | Total.Sequences | GC_beforemapping | total_deduplicated_percentage | Human.percentage | ERCC.percentage | EColi.percentage | Adapter.percentage | Vector.percentage | rRNA.percentage | Virus.percentage | Yeast.percentage | Mitoch.percentage | Phix.percentage | No.hits.percentage | percentage_aligned_beforemapping | error_rate | bias_53 | GC_aftermapping | percent_duplicates | sequence_length | median_insert_size | mean_coverage | ins_size_median | ins_size_peak | exonic | intronic | intergenic | |
|
|
|
| ------- | -------- | ------ | --------- | --------------- | ---------------- | ----------------------------- | ---------------- | --------------- | ---------------- | ------------------ | ----------------- | --------------- | ---------------- | ---------------- | ----------------- | --------------- | ------------------ | -------------------------------- | ---------- | ------- | --------------- | ------------------ | --------------- | ------------------ | ------------- | --------------- | ------------- | ------ | -------- | ---------- | |
|
|
|
| D5_1 | 20200724 | D5 | 1 | 48872858 | 52 | 45.2953551 | 94.79 | 0 | 0 | 0.01 | 0.15 | 17.01 | 1.23 | 4.54 | 0.61 | 0 | 0.9 | 98.6435612 | 0.01 | 1.01 | 58.0426004 | 54.7046449 | 150 | 263 | 15.8021 | 258 | 192 | 52.05 | 41.37 | 6.58 | |
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
|
|
|
|
|
|
原始数据质量和数据比对质量结果汇总(example) |
|
|
|
|
|
|
|
### 2. One_sample.csv |
|
|
|
|
|
|
|
| Name | Description | Group | Value | Reference_value | Conclusion | |
|
|
|
| ------------------------ | ------------------------------------------------------------ | ----- | ---------- | --------------- | ---------- | |
|
|
|
| Detected_gene | This metric is used to estimate the detection abundance of one sample. | D5 | 25126.6667 | (**, 58,395] | | |
|
|
|
| | | D6 | 25858.6667 | (**, 58,395] | | |
|
|
|
| | | F7 | 26089.6667 | (**, 58,395] | | |
|
|
|
| | | M8 | 26618 | (**, 58,395] | | |
|
|
|
| Jacard Index | Detection JI is the ratio of number of the genes detected in both replicates than the number of the genes detected in either of the replicates. This metric is used to estimate the repeatability of one sample detected gene from different replicates. | D5 | 0.8756 | [0.8, 1] | Pass | |
|
|
|
| | | D6 | 0.8752 | [0.8, 1] | Pass | |
|
|
|
| | | F7 | 0.8675 | [0.8, 1] | Pass | |
|
|
|
| | | M8 | 0.8804 | [0.8, 1] | Pass | |
|
|
|
| CV | CV is calculated based on the normalized expression levels in all 3 replicates of one sample for each genes. This metric is used to estimate the repeatability of one sample expression level from different replicates. | D5 | 11.4836 | | | |
|
|
|
| | | D6 | 10.8401 | | | |
|
|
|
| | | F7 | 12.2976 | | | |
|
|
|
| | | M8 | 10.8662 | | | |
|
|
|
| CTR | CTR is calculated based on the correlation of one sample expression level from different replicates. | D5 | 0.9718 | [0.95, 1] | Pass | |
|
|
|
| | | D6 | 0.9737 | [0.95, 1] | Pass | |
|
|
|
| | | F7 | 0.9699 | [0.95, 1] | Pass | |
|
|
|
| | | M8 | 0.9725 | [0.95, 1] | Pass | |
|
|
|
| Sensitivity_of_detection | Sensitivity is the proportion of true detected genes from reference dataset which can be correctly detected by the test set. | D5 | 0.9788 | [0.96, 1] | Pass | |
|
|
|
| | | D6 | 0.9794 | [0.96, 1] | Pass | |
|
|
|
| | | F7 | 0.9774 | [0.96, 1] | Pass | |
|
|
|
| | | M8 | 0.9818 | [0.96, 1] | Pass | |
|
|
|
| Specificity_of_detection | Specificity is the proportion of true non-detected genes from reference dataset which can be correctly not detected by the test set. | D5 | 0.9727 | [0.94, 1] | Pass | |
|
|
|
| | | D6 | 0.9713 | [0.94, 1] | Pass | |
|
|
|
| | | F7 | 0.9694 | [0.94, 1] | Pass | |
|
|
|
| | | M8 | 0.9677 | [0.94, 1] | Pass | |
|
|
|
|
|
|
|
一个种类样本层面数据表达质量(example) |
|
|
|
|
|
|
|
### 3. Two_sample.csv |
|
|
|
|
|
|
|
| Name | Description | Group | Value | Reference_value | Conclusion | |
|
|
|
| ---------------------------------------- | ------------------------------------------------------------ | ----- | ---------- | --------------- | ---------- | |
|
|
|
| Consistency_ratio_of_relative_expression | Proportion of genes that falls into reference range (mean +-2 fold SD) in relative ratio (log2FC). | D6/D5 | 1 | [0.82, 1] | Pass | |
|
|
|
| | | F7/D5 | 1 | [0.82, 1] | Pass | |
|
|
|
| | | F7/D6 | 1 | [0.82, 1] | Pass | |
|
|
|
| | | M8/D5 | 1 | [0.82, 1] | Pass | |
|
|
|
| | | M8/D6 | 1 | [0.82, 1] | Pass | |
|
|
|
| | | M8/F7 | 1 | [0.82, 1] | Pass | |
|
|
|
| Correlation_of_relative_log2FC | Pearson correlation between mean value of reference relative ratio and test site. | D6/D5 | 0.98137614 | [0.96,1] | Pass | |
|
|
|
| | | F7/D5 | 0.9725557 | [0.96,1] | Pass | |
|
|
|
| | | F7/D6 | 0.96789651 | [0.96,1] | Pass | |
|
|
|
| | | M8/D5 | 0.97951286 | [0.96,1] | Pass | |
|
|
|
| | | M8/D6 | 0.97959193 | [0.96,1] | Pass | |
|
|
|
| | | M8/F7 | 0.97736629 | [0.96,1] | Pass | |
|
|
|
| Sensitivity_of_DEGs | Sensitivity is the proportion of true DEGs from reference dataset which can be correctly identified as DEG by the test set. | D6/D5 | 0.8344293 | [0.80, 1] | Pass | |
|
|
|
| | | F7/D5 | 0.84870451 | [0.80, 1] | Pass | |
|
|
|
| | | F7/D6 | 0.84516486 | [0.80, 1] | Pass | |
|
|
|
| | | M8/D5 | 0.86227581 | [0.80, 1] | Pass | |
|
|
|
| | | M8/D6 | 0.86363942 | [0.80, 1] | Pass | |
|
|
|
| | | M8/F7 | 0.85718483 | [0.80, 1] | Pass | |
|
|
|
| Specificity_of_DEGs | Specificity is the proportion of true not DEGs from reference dataset which can be can be correctly identified as non-DEG by the test set. | D6/D5 | 0.97680659 | [0.95, 1] | Pass | |
|
|
|
| | | F7/D5 | 0.97056775 | [0.95, 1] | Pass | |
|
|
|
| | | F7/D6 | 0.975892 | [0.95, 1] | Pass | |
|
|
|
| | | M8/D5 | 0.96896379 | [0.95, 1] | Pass | |
|
|
|
| | | M8/D6 | 0.97206349 | [0.95, 1] | Pass | |
|
|
|
| | | M8/F7 | 0.96594245 | [0.95, 1] | Pass | |
|
|
|
|
|
|
|
两个种类样本层面数据表达质量(example) |
|
|
|
|
|
|
|
### 4. More_sample.csv |
|
|
|
|
|
|
|
| Name | Description | n | Value | Refenence_value | Conclusion | |
|
|
|
| ---- | ------------------------------------------------------------ | ----- | ----- | --------------- | ---------- | |
|
|
|
| SNR | Signal is defined as the average distance between libraries from the different samples on PCA plots and noise are those form the same samples. SNR is used to assess the ability to distinguish technical replicates from different biological samples. | 23705 | 13.64 | [5, inf) | Pass | |
|
|
|
|
|
|
|
多个种类样本层面数据表达质量(example) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 结果解读 |
|
|
|
|
|
|
|
### 1.原始数据质量和数据比对质量 |
|
|
|
|
|
|
|
| 质控参数 | 软件 | 定义 | 参考值 | |
|
|
|
| -------------------------------- | ------------ | ---------------------------- | --------- | |
|
|
|
| Total.Sequences | Fastqc | 总读段数量 | > 10 M | |
|
|
|
| GC_beforemapping | Fastqc | 比对前GC含量 | 40% - 60% | |
|
|
|
| total_deduplicated_percentage | Fastqc | 重复序列比例 | | |
|
|
|
| Human.percentage | FastQ Screen | 比对到人基因组读段比例 | > 90 % | |
|
|
|
| ERCC.percentage | FastQ Screen | 比对到ERCC基因组读段比例 | < 5% | |
|
|
|
| EColi.percentage | FastQ Screen | 比对到大肠杆菌基因组读段比例 | < 5% | |
|
|
|
| Adapter.percentage | FastQ Screen | 比对到接头读段比例 | < 5% | |
|
|
|
| Vector.percentage | FastQ Screen | 比对到载体读段比例 | < 5% | |
|
|
|
| rRNA.percentage | FastQ Screen | 比对到接头读段比例 | < 10% | |
|
|
|
| Virus.percentage | FastQ Screen | 比对到rRNA读段比例 | < 5% | |
|
|
|
| Yeast.percentage | FastQ Screen | 比对到真菌读段比例 | < 5% | |
|
|
|
| Mitoch.percentage | FastQ Screen | 比对到线粒体读段比例 | < 5% | |
|
|
|
| Phix.percentage | FastQ Screen | 比对到Phix读段比例 | < 5% | |
|
|
|
| No.hits.percentage | FastQ Screen | 未比对到已知物种读段比例 | < 5% | |
|
|
|
| percentage_aligned_beforemapping | Qualimap | 比对率 | > 90% | |
|
|
|
| error_rate | Qualimap | 错误率 | < 5% | |
|
|
|
| bias_53 | Qualimap | 5-3偏好性 | | |
|
|
|
| GC_aftermapping | Qualimap | 比对后GC含量 | 40% - 60% | |
|
|
|
| percent_duplicates | Qualimap | 读段比对后重复比例 | | |
|
|
|
| sequence_length | Qualimap | 读段长度 | ~150 | |
|
|
|
| median_insert_size | Qualimap | 插入读段长度 | 200 - 300 | |
|
|
|
| mean_coverage | Qualimap | 覆盖率 | | |
|
|
|
| ins_size_median | Qualimap | 插入读段长度中位数 | 200 - 300 | |
|
|
|
| ins_size_peak | Qualimap | 插入读段长度众数 | 200 - 300 | |
|
|
|
| exonic | Qualimap | 比对到外显子的碱基比例 | 40% - 60% | |
|
|
|
| intronic | Qualimap | 比对到内含子的碱基比例 | 40% - 60% | |
|
|
|
| intergenic | Qualimap | 比对到内基因间区的碱基比例 | < 10% | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
###2.数据表达质量 |
|
|
|
|
|
|
|
| Quality metrics | Category | Description | Reference value | |
|
|
|
| ----------------------------------------- | ----------- | ------------------------------------------------------------ | --------------- | |
|
|
@@ -112,23 +341,13 @@ strand bias |
|
|
|
| Correlation of technical replicates (CTR) | One group | CTR is calculated based on the correlation of one sample expression level from different replicates. | [0.95, 1] | |
|
|
|
| Signal-to-noise Ratio (SNR) | More groups | Signal is defined as the average distance between libraries from the different samples on PCA plots and noise are those form the same samples. SNR is used to assess the ability to distinguish technical replicates from different biological samples. | [5, inf) | |
|
|
|
| Sensitivity of detection | One group | Sensitivity is the proportion of "true" detected genes from reference dataset which can be correctly detected by the test set. | [0.96, 1] | |
|
|
|
| /Reference dependent | | | | |
|
|
|
| Specificity of detection | One group | Specificity is the proportion of "true" non-detected genes from reference dataset which can be correctly not detected by the test set. | [0.94, 1] | |
|
|
|
| /Reference dependent | | | | |
|
|
|
| Consistency ratio of relative expression | Two groups | Proportion of genes that falls into reference range (mean ± 2 fold SD) in relative ratio (log2FC). | [0.82, 1] | |
|
|
|
| /Reference dependent | | | | |
|
|
|
| Correlation of relative log2FC | Two groups | Pearson correlation between mean value of reference relative ratio and test site. | [0.96,1] | |
|
|
|
| /Reference dependent | | | | |
|
|
|
| Sensitivity of DEGs | Two groups | Sensitivity is the proportion of "true" DEGs from reference dataset which can be correctly identified as DEG by the test set. | [0.80, 1] | |
|
|
|
| /Reference dependent | | | | |
|
|
|
| Specificity of DEGs | Two groups | Specificity is the proportion of "true" not DEGs from reference dataset which can be can be correctly identified as non-DEG by the test set. | [0.95, 1] | |
|
|
|
| /Reference dependent | | | | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 结果展示与解读 |
|
|
|
|
|
|
|
|
|
|
|
|