import json import pandas as pd import sys, argparse, os import statistics parser = argparse.ArgumentParser(description="This script is to summary information for pre-alignment QC") parser.add_argument('-general', '--general_stat', type=str, help='multiqc_general_stats.txt', required=True) parser.add_argument('-is', '--is_metrics', type=str, help='_is_metrics.txt', required=True) parser.add_argument('-wgsmetrics', '--WgsMetricsAlgo', type=str, help='deduped_WgsMetricsAlgo', required=True) parser.add_argument('-qualityyield', '--QualityYield', type=str, help='deduped_QualityYield', required=True) parser.add_argument('-aln', '--aln_metrics', type=str, help='aln_metrics.txt', required=True) args = parser.parse_args() general_file = args.general_stat is_file = args.is_metrics wgsmetrics_file = args.wgsmetrics qualityyield_file = args.qualityyield aln_file = args.aln_metrics ##### Table ## general stat: % GC dat = pd.read_table(general_file) qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')] qualimap.insert(loc=0, column='Sample', value=dat['Sample']) qualimap_stat = qualimap.dropna() part1 = fastqc_stat.loc[:,['Sample', 'FastQC_mqc-generalstats-fastqc-percent_duplicates','FastQC_mqc-generalstats-fastqc-total_sequences']] ## is_metrics: median insert size ## deduped_WgsMetricsAlgo: 1x, 5x, 10x, 30x, median coverage with open(html_file) as file: origDict = json.load(file) newdict = {(k1, k2):v2 for k1,v1 in origDict.items() \ for k2,v2 in origDict[k1].items()} df = pd.DataFrame([newdict[i] for i in sorted(newdict)], index=pd.MultiIndex.from_tuples([i for i in sorted(newdict.keys())])) gc = [] at = [] for i in part1['Sample']: sub_df = df.loc[i,:] gc.append(statistics.mean(sub_df['g']/sub_df['c'])) at.append(statistics.mean(sub_df['a']/sub_df['t'])) ## fastq_screen dat = pd.read_table(fastqscreen_file) fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')] del fastqscreen['ERCC percentage'] del fastqscreen['Phix percentage'] ### merge all information part1.insert(loc=3, column='G/C ratio', value=gc) part1.insert(loc=4, column='A/T ratio', value=at) part1.reset_index(drop=True, inplace=True) fastqscreen.reset_index(drop=True, inplace=True) df = pd.concat([part1, fastqscreen], axis=1) df = df.append(df.mean(axis=0),ignore_index=True) df = df.fillna('Batch average value') df.columns = ['Sample','Total sequences (million)','% Dup','G/C ratio','A/T ratio','% Human','% EColi','% Adapter' , '% Vector','% rRNA' , '% Virus','% Yeast' ,'% Mitoch' ,'% No hits'] df.to_csv('per-alignment_table_summary.txt',sep='\t',index=False) ##### Picture ## cumulative genome coverage with open(json_file) as file: all_dat = json.load(file) genome_coverage_json = all_dat['report_plot_data']['qualimap_genome_fraction']['datasets'][0] dat =pd.DataFrame.from_records(genome_coverage_json) genome_coverage = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) for i in range(dat.shape[0]): one_sample = pd.DataFrame(dat.loc[i,'data']) one_sample.index = one_sample[0] genome_coverage[dat.loc[i,'name']] = one_sample[1] genome_coverage = genome_coverage.transpose() genome_coverage['Sample'] = genome_coverage.index genome_coverage.to_csv('post-alignment_genome_coverage.txt',sep='\t',index=False) ## insert size histogram insert_size_json = all_dat['report_plot_data']['qualimap_insert_size']['datasets'][0] dat =pd.DataFrame.from_records(insert_size_json) insert_size = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) for i in range(dat.shape[0]): one_sample = pd.DataFrame(dat.loc[i,'data']) one_sample.index = one_sample[0] insert_size[dat.loc[i,'name']] = one_sample[1] insert_size = insert_size.transpose() insert_size['Sample'] = insert_size.index insert_size.to_csv('post-alignment_insert_size.txt',sep='\t',index=False) ## GC content distribution gc_content_json = all_dat['report_plot_data']['qualimap_gc_content']['datasets'][0] dat =pd.DataFrame.from_records(gc_content_json) gc_content = pd.DataFrame(index=pd.DataFrame(dat.loc[0,'data'])[0]) for i in range(dat.shape[0]): one_sample = pd.DataFrame(dat.loc[i,'data']) one_sample.index = one_sample[0] gc_content[dat.loc[i,'name']] = one_sample[1] gc_content = gc_content.transpose() gc_content['Sample'] = gc_content.index gc_content.to_csv('post-alignment_gc_content.txt',sep='\t',index=False)