Browse Source

first commit

tags/v0.1.0
LUYAO REN 2 years ago
commit
b0023c2e03
60 changed files with 5028 additions and 0 deletions
  1. +251
    -0
      README.md
  2. BIN
      codescripts/.DS_Store
  3. +90
    -0
      codescripts/D5_D6.py
  4. +37
    -0
      codescripts/Indel_bed.py
  5. +72
    -0
      codescripts/bed_region.py
  6. +67
    -0
      codescripts/cluster.sh
  7. +102
    -0
      codescripts/dna_data_summary.py
  8. +137
    -0
      codescripts/extract_tables.py
  9. +92
    -0
      codescripts/extract_vcf_information.py
  10. +47
    -0
      codescripts/filter_indel_over_50_cluster.py
  11. +43
    -0
      codescripts/filter_indel_over_50_mendelian.py
  12. +416
    -0
      codescripts/high_confidence_call_vote.py
  13. +42
    -0
      codescripts/high_voted_mendelian_bed.py
  14. +50
    -0
      codescripts/how_many_samples.py
  15. +42
    -0
      codescripts/lcl5_all_called_variants.py
  16. +6
    -0
      codescripts/linux_command.sh
  17. +129
    -0
      codescripts/merge_mendelian_vcfinfo.py
  18. +71
    -0
      codescripts/merge_two_family.py
  19. +161
    -0
      codescripts/merge_two_family_with_genotype.py
  20. +109
    -0
      codescripts/oneClass.py
  21. +101
    -0
      codescripts/post-alignment.py
  22. +132
    -0
      codescripts/pre_alignment.py
  23. +144
    -0
      codescripts/reformVCF.py
  24. +227
    -0
      codescripts/replicates_consensus.py
  25. +36
    -0
      codescripts/vcf2bed.py
  26. +295
    -0
      codescripts/voted_by_vcfinfo_mendelianinfo.py
  27. +30
    -0
      defaults
  28. +42
    -0
      inputs
  29. BIN
      pictures/Picture1.png
  30. BIN
      pictures/performance.png
  31. BIN
      pictures/table.png
  32. BIN
      pictures/workflow.png
  33. BIN
      tasks/.DS_Store
  34. +48
    -0
      tasks/BQSR.wdl
  35. +39
    -0
      tasks/Dedup.wdl
  36. +34
    -0
      tasks/Haplotyper.wdl
  37. +41
    -0
      tasks/Realigner.wdl
  38. +34
    -0
      tasks/bed_to_interval_list.wdl
  39. +84
    -0
      tasks/benchmark.wdl
  40. +47
    -0
      tasks/deduped_Metrics.wdl
  41. +34
    -0
      tasks/extract_tables.wdl
  42. +23
    -0
      tasks/extract_tables_vcf.wdl
  43. +33
    -0
      tasks/fastqc.wdl
  44. +40
    -0
      tasks/fastqscreen.wdl
  45. +33
    -0
      tasks/filter_vcf.wdl
  46. +37
    -0
      tasks/filter_vcf_bed.wdl
  47. +46
    -0
      tasks/get_variants_in_del.wdl
  48. +37
    -0
      tasks/mapping.wdl
  49. +46
    -0
      tasks/mendelian.wdl
  50. +31
    -0
      tasks/merge_family.wdl
  51. +35
    -0
      tasks/merge_mendelian.wdl
  52. +52
    -0
      tasks/merge_sentieon_metrics.wdl
  53. +48
    -0
      tasks/multiqc.wdl
  54. +31
    -0
      tasks/multiqc_hap.wdl
  55. +30
    -0
      tasks/qualimap.wdl
  56. +39
    -0
      tasks/quartet_mendelian.wdl
  57. +63
    -0
      tasks/rename_fastq.wdl
  58. +41
    -0
      tasks/rename_vcf.wdl
  59. +54
    -0
      tasks/sentieon.wdl
  60. +977
    -0
      workflow.wdl

+ 251
- 0
README.md View File

@@ -0,0 +1,251 @@
# Quality control of germline variants calling results using a Chinese Quartet family

> Author: Run Luyao
>
> E-mail:18110700050@fudan.edu.cn
>
> Git: http://47.103.223.233/renluyao/quartet_dna_quality_control_wgs_big_pipeline
>
> Last Updates: 2022/10/31

## Install

```
open-choppy-env
choppy install renluyao/quartet_dna_quality_control_big_pipeline
```

## Introduction

###Chinese Quartet DNA reference materials

With the rapid development of sequencing technology and the dramatic decrease of sequencing costs, DNA sequencing has been widely used in scientific research, diagnosis of and treatment selection for human diseases. However, due to the lack of effective quality assessment and control of the high-throughput omics data generation and analysis processes, variants calling results are seriously inconsistent among different technical replicates, batches, laboratories, sequencing platforms, and analysis pipelines, resulting in irreproducible scientific results and conclusions, huge waste of resources, and even endangering the life and health of patients. Therefore, reference materials for quality control of the whole process from omics data generation to data analysis are urgently needed.

We first established genomic DNA reference materials from four immortalized B-lymphoblastoid cell lines of a Chinese Quartet family including parents and monozygotic twin daughters to make performance assessment of germline variants calling results. To establish small variant benchmark calls and regions, we generated whole-genome sequencing data in nine batches, with depth ranging from 30x to 60x, by employing PCR-free and PCR libraries on four popular short-read sequencing platforms (Illumina HiSeq XTen, Illumina NovaSeq, MGISEQ-2000, and DNBSEQ-T7) with three replicates at each batch, resulting in 108 libraries in total and 27 libraries for each Quartet DNA reference material. Then, we selected variants concordant in multiple call sets and in Mendelian consistency within Quartet family members as small variant benchmark calls, resulting in 4.2 million high-confidence variants (SNV and Indel) and 2.66 G high confidence genomic region, covering 87.8% of the human reference genome (GRCh38, chr1-22 and X). Two orthogonal technologies were used for verifying the high-confidence variants. The consistency rate with PMRA (Axiom Precision Medicine Research Array) was 99.6%, and 95.9% of high-confidence variants were validated by 10X Genomics whole-genome sequencing data. Genetic built-in truth of the Quartet family design is another kind of “truth” within the four Quartet samples. Apart from comparison with benchmark calls in the benchmark regions to identify false-positive and false-negative variants, pedigree information among the Quartet DNA reference materials, i.e., reproducibility rate of variants between the twins and Mendelian concordance rate among family members, are complementary approaches to comprehensively estimate genome-wide variants calling performance. Finally, we developed a whole-genome sequencing data quality assessment pipeline and demonstrated its utilities with two examples of using the Quartet reference materials and datasets to evaluate data generation performance in three sequencing labs and different data analysis pipelines.

### Quality control pipeline for WGS

This Quartet quality control pipeline evaluate the performance of reads quality and variant calling quality. This pipeline accepts FASTQ format input files or VCF format input files. If the users input FASTQ files, this APP will output the results of pre-alignment quality control from FASTQ files, post-alignment quality control from BAM files and variant calling quality control from VCF files. [GATK best practice pipelines](https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-) (implemented by [SENTIEON software](https://support.sentieon.com/manual/)) were used to map reads to the reference genome and call variants. If the users input VCF files, this APP will only output the results of variant calling quality control.

Quartet quality control analysis pipeline started from FASTQ files is implemented across seven main procedures:

- Pre-alignment QC of FASTQ files
- Genome alignment
- Post-alignment QC of BAM files
- Germline variant calling
- Variant calling QC depended on benchmark sets of VCF files
- Check Mendelian ingeritance states across four Quartet samples of every variants
- Variant calling QC depended on Quartet genetic relationship of VCF files

Quartet quality control analysis pipeline started from VCF files is implemented across three main procedures:

- Variant calling QC depended on benchmark sets of VCF files
- Check Mendelian ingeritance states across four Quartet samples of every variants
- Variant calling QC depended on Quartet genetic relationship of VCF files

![workflow](./pictures/workflow.png)

Results generated from this APP can be visualized by Choppy report.

## Data Processing Steps

### 1. Pre-alignment QC of FASTQ files

#### [Fastqc](<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) v0.11.5

[FastQC](<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/>) is used to investigate the quality of fastq files

```bash
fastqc -t <threads> -o <output_directory> <fastq_file>
```

#### [Fastq Screen](<https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/>) 0.12.0

Fastq Screen is used to inspect whether the library were contaminated. For example, we expected 99% reads aligned to human genome, 10% reads aligned to mouse genome, which is partly homologous to human genome. If too many reads are aligned to E.Coli or Yeast, libraries or cell lines are probably comtminated.

```bash
fastq_screen --aligner <aligner> --conf <config_file> --top <number_of_reads> --threads <threads> <fastq_file>
```

### 2. Genome alignment

####[sentieon-genomics](https://support.sentieon.com/manual/):v2019.11.28

Reads were mapped to the human reference genome GRCh38 using Sentieon BWA.

```bash
${SENTIEON_INSTALL_DIR}/bin/bwa mem -M -R "@RG\tID:${group}\tSM:${sample}\tPL:${pl}" -t $nt -K 10000000 ${ref_dir}/${fasta} ${fastq_1} ${fastq_2} | ${SENTIEON_INSTALL_DIR}/bin/sentieon util sort -o ${sample}.sorted.bam -t $nt --sam2bam -i -

```

### 3. Post-alignment QC

Qualimap and Paicard Tools (implemented by Sentieon) are used to check the quality of BAM files. Deduplicated BAM files are used in this step.

#### [Qualimap](<http://qualimap.bioinfo.cipf.es/>) 2.0.0

```bash
qualimap bamqc -bam <bam_file> -outformat PDF:HTML -nt <threads> -outdir <output_directory> --java-mem-size=32G
```

####[Sentieon-genomics](https://support.sentieon.com/manual/):v2019.11.28

```
${SENTIEON_INSTALL_DIR}/bin/sentieon driver -r ${ref_dir}/${fasta} -t $nt -i ${Dedup_bam} --algo CoverageMetrics --omit_base_output ${sample}_deduped_coverage_metrics --algo MeanQualityByCycle ${sample}_deduped_mq_metrics.txt --algo QualDistribution ${sample}_deduped_qd_metrics.txt --algo GCBias --summary ${sample}_deduped_gc_summary.txt ${sample}_deduped_gc_metrics.txt --algo AlignmentStat ${sample}_deduped_aln_metrics.txt --algo InsertSizeMetricAlgo ${sample}_deduped_is_metrics.txt --algo QualityYield ${sample}_deduped_QualityYield.txt --algo WgsMetricsAlgo ${sample}_deduped_WgsMetricsAlgo.txt
```

### 4. Germline variant calling

HaplotyperCaller implemented by Sentieon is used to identify germline variants.

```bash
${SENTIEON_INSTALL_DIR}/bin/sentieon driver -r ${ref_dir}/${fasta} -t $nt -i ${recaled_bam} --algo Haplotyper ${sample}_hc.vcf
```

### 5. Variants Calling QC

![performance](./pictures/performance.png)

#### 5.1 Performance assessment based on benchmark sets

#### [Hap.py](<https://github.com/Illumina/hap.py>) v0.3.9

Variants were compared with benchmark calls in benchmark regions.

```bash
hap.py <truth_vcf> <query_vcf> -f <bed_file> --threads <threads> -o <output_filename>
```

#### 5.2 Performance assessment based on Quartet genetic built-in truth

#### [VBT](https://github.com/sbg/VBT-TrioAnalysis) v1.1

We splited the Quartet family to two trios (F7, M8, D5 and F7, M8, D6) and then do the Mendelian analysis. A Quartet Mendelian concordant variant is the same between the twins (D5 and D6) , and follow the Mendelian concordant between parents (F7 and M8). Mendelian concordance rate is the Mendelian concordance variant divided by total detected variants in a Quartet family. Only variants on chr1-22,X are included in this analysis.

```bash
vbt mendelian -ref <fasta_file> -mother <family_merged_vcf> -father <family_merged_vcf> -child <family_merged_vcf> -pedigree <ped_file> -outDir <output_directory> -out-prefix <output_directory_prefix> --output-violation-regions -thread-count <threads>
```

## Input files

```bash
choppy samples renluyao/quartet_dna_quality_control_wgs_big_pipeline-latest --output samples
```

####Samples CSV file

#### 1. Start from Fastq files

```BASH
sample_id,project,fastq_1_D5,fastq_2_D5,fastq_1_D6,fastq_2_D6,fastq_1_F7,fastq_2_F7,fastq_1_M8,fastq_2_M8
# sample_id in choppy system
# project name
# oss path of D5 fastq read1 file
# oss path of D5 fastq read2 file
# oss path of D6 fastq read1 file
# oss path of D6 fastq read2 file
# oss path of F7 fastq read1 file
# oss path of F7 fastq read2 file
# oss path of M8 fastq read1 file
# oss path of M8 fastq read2 file
```

#### 2. Start from VCF files

```BASH
sample_id,project,vcf_D5,vcf_D6,vcf_F7,vcf_M8
# sample_id in choppy system
# project name
# oss path of D5 VCF file
# oss path of D6 VCF file
# oss path of F7 VCF file
# oss path of M8 VCF file
```

## Output Files

#### 1. extract_tables.wdl/extract_tables_vcf.wdl

(FASTQ) Pre-alignment QC: pre_alignment.txt

(FASTQ) Post-alignment QC: post_alignment.txt

(FASTQ/VCF) Variants calling QC: variants.calling.qc.txt

####2. quartet_mendelian.wdl

(FASTQ/VCF) Variants calling QC: mendelian.txt

## Output files format

####1. pre_alignment.txt

| Column name | Description |
| ------------------------- | --------------------------------------------------------- |
| Sample | Sample name |
| %Dup | Percentage duplicate reads |
| %GC | Average GC percentage |
| Total Sequences (million) | Total sequences |
| %Human | Percentage of reads mapped to human genome |
| %EColi | Percentage of reads mapped to Ecoli |
| %Adapter | Percentage of reads mapped to adapter |
| %Vector | Percentage of reads mapped to vector |
| %rRNA | Percentage of reads mapped to rRNA |
| %Virus | Percentage of reads mapped to virus |
| %Yeast | Percentage of reads mapped to yeast |
| %Mitoch | Percentage of reads mapped to mitochondrion |
| %No hits | Percentage of reads not mapped to genomes mentioned above |

#### 2. post_alignment.txt

| Column name | Description |
| --------------------- | --------------------------------------------- |
| Sample | Sample name |
| %Mapping | Percentage of mapped reads |
| %Mismatch Rate | Mapping error rate |
| Mendelian Insert Size | Median insert size(bp) |
| %Q20 | Percentage of bases >Q20 |
| %Q30 | Percentage of bases >Q30 |
| Mean Coverage | Mean deduped coverage |
| Median Coverage | Median deduped coverage |
| PCT_1X | Fraction of genome with at least 1x coverage |
| PCT_5X | Fraction of genome with at least 5x coverage |
| PCT_10X | Fraction of genome with at least 10x coverage |
| PCT_20X | Fraction of genome with at least 20x coverage |
| PCT_30X | Fraction of genome with at least 30x coverage |
| Fold-80 | Fold-80 penalty |
| On target bases rate | On target bases rate |


####3. variants.calling.qc.txt

| Column name | Description |
| --------------- | ------------------------------------------------------------ |
| Sample | Sample name |
| SNV number | Total SNV number (chr1-22,X) |
| INDEL number | Total INDEL number (chr1-22,X) |
| SNV query | SNV number in benchmark region |
| INDEL query | INDEL number in benchmark region |
| SNV TP | True positive SNV |
| INDEL TP | True positive INDEL |
| SNV FP | False positive SNV |
| INDEL FP | True positive INDEL |
| SNV FN | False negative SNV |
| INDEL FN | False negative INDEL |
| SNV precision | Precision of SNV calls when compared with benchmark calls in benchmark regions |
| INDEL precision | Precision of INDEL calls when compared with benchmark calls in benchmark regions |
| SNV recall | Recall of SNV calls when compared with benchmark calls in benchmark regions |
| INDEL recall | Recall of INDEL calls when compared with benchmark calls in benchmark regions |
| SNV F1 | F1 score of SNV calls when compared with benchmark calls in benchmark regions |
| INDEL F1 | F1 score of INDEL calls when compared with benchmark calls in benchmark regions |

####4 {project}.summary.txt

| Column name | Description |
| ----------------------------- | ----------------------------------------------------------- |
| Family | Family name defined by inputed project name |
| Reproducibility_D5_D6 | Percentage of variants were shared by the twins (D5 and D6) |
| Mendelian_Concordance_Quartet | Percentage of variants were Mendelian concordance |




BIN
codescripts/.DS_Store View File


+ 90
- 0
codescripts/D5_D6.py View File

@@ -0,0 +1,90 @@
from __future__ import division
import pandas as pd
import sys, argparse, os


# input arguments
parser = argparse.ArgumentParser(description="this script is to calculate reproducibility between Quartet_D5 and Quartet_D6s")

parser.add_argument('-sister', '--sister', type=str, help='sister.txt', required=True)
parser.add_argument('-project', '--project', type=str, help='project name', required=True)


args = parser.parse_args()
sister_file = args.sister
project_name = args.project

# output file
output_name = project_name + '.sister.reproducibility.txt'

output_file = open(output_name,'w')

# input files
sister_dat = pd.read_table(sister_file)

indel_sister_same = 0
indel_sister_diff = 0
snv_sister_same = 0
snv_sister_diff = 0

for row in sister_dat.itertuples():
# snv indel
if ',' in row[4]:
alt = row[4].split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(row[4])
alt = alt_max
ref = row[3]
if len(ref) == 1 and alt == 1:
cate = 'SNV'
elif len(ref) > alt:
cate = 'INDEL'
elif alt > len(ref):
cate = 'INDEL'
elif len(ref) == alt:
cate = 'INDEL'
# sister
if row[5] == row[6]:
if row[5] == './.':
mendelian = 'noInfo'
sister_count = "no"
elif row[5] == '0/0':
mendelian = 'Ref'
sister_count = "no"
else:
mendelian = '1'
sister_count = "yes_same"
else:
mendelian = '0'
if (row[5] == './.' or row[5] == '0/0') and (row[6] == './.' or row[6] == '0/0'):
sister_count = "no"
else:
sister_count = "yes_diff"
if cate == 'SNV':
if sister_count == 'yes_same':
snv_sister_same += 1
elif sister_count == 'yes_diff':
snv_sister_diff += 1
else:
pass
elif cate == 'INDEL':
if sister_count == 'yes_same':
indel_sister_same += 1
elif sister_count == 'yes_diff':
indel_sister_diff += 1
else:
pass

indel_sister = indel_sister_same/(indel_sister_same + indel_sister_diff)
snv_sister = snv_sister_same/(snv_sister_same + snv_sister_diff)
outcolumn = 'Project\tReproducibility_D5_D6\n'
indel_outResult = project_name + '.INDEL' + '\t' + str(indel_sister) + '\n'
snv_outResult = project_name + '.SNV' + '\t' + str(snv_sister) + '\n'
output_file.write(outcolumn)
output_file.write(indel_outResult)
output_file.write(snv_outResult)




+ 37
- 0
codescripts/Indel_bed.py View File

@@ -0,0 +1,37 @@
import pandas as pd
import sys, argparse, os
mut = pd.read_table('/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/MIE/vcf/mutation_type',header=None)
outIndel = open(sys.argv[1],'w')
for row in mut.itertuples():
if ',' in row._4:
alt_seq = row._4.split(',')
alt_len = [len(i) for i in alt_seq]
alt = max(alt_len)
else:
alt = len(row._4)
ref = row._3
pos = row._2
if len(ref) == 1 and alt == 1:
pass
elif len(ref) > alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif alt > len(ref):
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif len(ref) == alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)








+ 72
- 0
codescripts/bed_region.py View File

@@ -0,0 +1,72 @@
import pandas as pd
import sys, argparse, os
mut = mut = pd.read_table('/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/vcf/mutation_type',header=None)
vote = pd.read_table('/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/all_info/benchmark.vote.mendelian.txt',header=None)
merged_df = pd.merge(vote, mut, how='inner', left_on=[0,1], right_on = [0,1])
outFile = open(sys.argv[1],'w')
outIndel = open(sys.argv[2],'w')
for row in merged_df.itertuples():
#d5
if ',' in row._7:
d5 = row._7.split(',')
d5_len = [len(i) for i in d5]
d5_alt = max(d5_len)
else:
d5_alt = len(row._7)
#d6
if ',' in row._15:
d6 = row._15.split(',')
d6_len = [len(i) for i in d6]
d6_alt = max(d6_len)
else:
d6_alt = len(row._15)
#f7
if ',' in row._23:
f7 = row._23.split(',')
f7_len = [len(i) for i in f7]
f7_alt = max(f7_len)
else:
f7_alt = len(row._23)
#m8
if ',' in row._31:
m8 = row._31.split(',')
m8_len = [len(i) for i in m8]
m8_alt = max(m8_len)
else:
m8_alt = len(row._31)
all_length = [d5_alt,d6_alt,f7_alt,m8_alt]
alt = max(all_length)
ref = row._35
pos = int(row._2)
if len(ref) == 1 and alt == 1:
StartPos = int(pos) -1
EndPos = int(pos)
cate = 'SNV'
elif len(ref) > alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
cate = 'INDEL'
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif alt > len(ref):
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
elif len(ref) == alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
outline_indel = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\n'
outIndel.write(outline_indel)
outline = row._1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\t' + str(row._2) + '\t' + cate + '\n'
outFile.write(outline)









+ 67
- 0
codescripts/cluster.sh View File

@@ -0,0 +1,67 @@
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$7"\t.\t.\t.\tGT\t"$6}' | grep -v '0/0' > LCL5.body
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$15"\t.\t.\t.\tGT\t"$14}' | grep -v '0/0' > LCL6.body
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$23"\t.\t.\t.\tGT\t"$22}' | grep -v '0/0'> LCL7.body
cat benchmark.men.vote.diffbed.lengthlessthan50.txt | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$31"\t.\t.\t.\tGT\t"$30}'| grep -v '0/0' > LCL8.body
cat header5 LCL5.body > LCL5.beforediffbed.vcf
cat header6 LCL6.body > LCL6.beforediffbed.vcf
cat header7 LCL7.body > LCL7.beforediffbed.vcf
cat header8 LCL8.body > LCL8.beforediffbed.vcf
rtg bgzip *beforediffbed.vcf
rtg index *beforediffbed.vcf.gz

rtg vcffilter -i LCL5.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL5.afterfilterdiffbed.vcf.gz
rtg vcffilter -i LCL6.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL6.afterfilterdiffbed.vcf.gz
rtg vcffilter -i LCL7.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL7.afterfilterdiffbed.vcf.gz
rtg vcffilter -i LCL8.beforediffbed.vcf.gz --exclude-bed=/mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed -o LCL8.afterfilterdiffbed.vcf.gz

/mnt/pgx_src_data_pool_4/home/renluyao/softwares/annovar/table_annovar.pl LCL5.beforediffbed.vcf.gz /mnt/pgx_src_data_pool_4/home/renluyao/softwares/annovar/humandb \
-buildver hg38 \
-out LCL5 \
-remove \
-protocol 1000g2015aug_all,1000g2015aug_afr,1000g2015aug_amr,1000g2015aug_eas,1000g2015aug_eur,1000g2015aug_sas,clinvar_20190305,gnomad211_genome \
-operation f,f,f,f,f,f,f,f \
-nastring . \
-vcfinput \
--thread 8

rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL5.afterfilterdiffbed.vcf.gz -o LCL5_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/
rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL6.afterfilterdiffbed.vcf.gz -o LCL6_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/
rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL7.afterfilterdiffbed.vcf.gz -o LCL7_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/
rtg vcfeval -b /mnt/pgx_src_data_pool_4/home/renluyao/Quartet/GIAB/NA12878_HG001/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz -c LCL8.afterfilterdiffbed.vcf.gz -o LCL8_NIST -t /mnt/pgx_src_data_pool_4/home/renluyao/annotation/hg38/GRCh38.d1.vd1.sdf/


zcat LCL5.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l
zcat LCL6.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l
zcat LCL7.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l
zcat LCL8.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) == 1)) { print } }' | wc -l


zcat LCL5.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l
zcat LCL6.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l
zcat LCL7.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l
zcat LCL8.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) < 11) && (length($5) > 1)) { print } }' | wc -l


zcat LCL5.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l
zcat LCL6.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l
zcat LCL7.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l
zcat LCL8.afterfilterdiffbed.vcf.gz | grep -v '#' | awk '{ if ((length($4) == 1) && (length($5) > 10)) { print } }' | wc -l

bedtools subtract -a LCL5.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL5.27.homo_ref.consensus.filtereddiffbed.bed
bedtools subtract -a LCL6.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL6.27.homo_ref.consensus.filtereddiffbed.bed
bedtools subtract -a LCL7.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL7.27.homo_ref.consensus.filtereddiffbed.bed
bedtools subtract -a LCL8.27.homo_ref.consensus.bed -b /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/MIE/diff.merged.bed > LCL8.27.homo_ref.consensus.filtereddiffbed.bed


python vcf2bed.py LCL5.body LCL5.variants.bed
python vcf2bed.py LCL6.body LCL6.variants.bed
python vcf2bed.py LCL7.body LCL7.variants.bed
python vcf2bed.py LCL8.body LCL8.variants.bed



cat /mnt/pgx_src_data_pool_4/home/renluyao/manuscript/benchmark_calls/all_info/LCL5.variants.bed | cut -f1,11,12 | cat - LCL5.27.homo_ref.consensus.filtereddiffbed.bed | sort -k1,1 -k2,2n > LCL5.high.confidence.bed





+ 102
- 0
codescripts/dna_data_summary.py View File

@@ -0,0 +1,102 @@
import pandas as pd
from functools import reduce
import sys, argparse, os
import glob

parser = argparse.ArgumentParser(description="This script is to get information from multiqc and sentieon, output the raw fastq, bam and variants calling (precision and recall) quality metrics")


parser.add_argument('-pre', '--pre_alignment_path', type=str, help='pre-alignment directory')
parser.add_argument('-post', '--post_alignment_path', type=str, help='post-alignment directory')
parser.add_argument('-vcf', '--benchmark_path', type=str, help='benchmark directory')
parser.add_argument('-men', '--mendelian_path', type=str, help='mendelian directory')


args = parser.parse_args()


# Rename input:
pre_alignment_path = args.pre_alignment_path
post_alignment_path = args.post_alignment_path
benchmark_path = args.benchmark_path
mendelian_path = args.mendelian_path


###pre-alignment
pre_alignment_df = pd.concat(map(pd.read_table,glob.glob(os.path.join(pre_alignment_path,'*.txt'))))

pre_alignment_df.to_csv('pre-alignment-all.txt',sep="\t",index=0)

###post-alignment

post_alignment_df = pd.concat(map(pd.read_table,glob.glob(os.path.join(post_alignment_path,'*.txt'))))

post_alignment_df.to_csv('post-alignment-all.txt',sep="\t",index=0)

###variant-calling qc

## detail
variant_calling_df = pd.concat(map(pd.read_table,glob.glob(os.path.join(benchmark_path,'*.txt'))))

variant_calling_df.to_csv('variant-calling-all.txt',sep="\t",index=0)

## mean + sd

####snv
a = variant_calling_df["SNV precision"].mean().round(2)
b = variant_calling_df["SNV precision"].std().round(2)

c = variant_calling_df["SNV recall"].mean().round(2)
d = variant_calling_df["SNV precision"].std().round(2)

variant_calling_df["SNV F1 score"] = 2 * variant_calling_df["SNV precision"] * variant_calling_df["SNV recall"] / (variant_calling_df["SNV precision"] + variant_calling_df["SNV recall"])

e = variant_calling_df["SNV F1 score"].mean().round(2)
f = variant_calling_df["SNV F1 score"].std().round(2)

#### indel

a2 = variant_calling_df["INDEL precision"].mean().round(2)
b2 = variant_calling_df["INDEL precision"].std().round(2)

c2 = variant_calling_df["INDEL recall"].mean().round(2)
d2 = variant_calling_df["INDEL precision"].std().round(2)

variant_calling_df["INDEL F1 score"] = 2 * variant_calling_df["INDEL precision"] * variant_calling_df["INDEL recall"] / (variant_calling_df["INDEL precision"] + variant_calling_df["INDEL recall"])

e2 = variant_calling_df["INDEL F1 score"].mean().round(2)
f2 = variant_calling_df["INDEL F1 score"].std().round(2)

data = {'precision':[str(a),str(a2)], 'precision_sd':[str(b),str(b2)], 'recall':[str(c),str(c2)], 'recall_sd':[str(d),str(d2)], 'F1-score':[str(e),str(e2)], 'F1-score_sd':[str(f),str(f2)] }

df = pd.DataFrame(data, index =['SNV', 'INDEL'])

df.to_csv('benchmark_summary.txt',sep="\t")


### Mendelian

mendelian_df = pd.concat(map(pd.read_table,glob.glob(os.path.join(mendelian_path,'*.txt'))))

mendelian_df.to_csv('mendelian-all.txt',sep="\t",index=0)

### snv
snv = mendelian_df[mendelian_df['Family'].str.contains("SNV")]

indel = mendelian_df[mendelian_df['Family'].str.contains("INDEL")]

g = snv["Mendelian_Concordance_Rate"].mean().round(2)
h = snv["Mendelian_Concordance_Rate"].std().round(2)

g2 = indel["Mendelian_Concordance_Rate"].mean().round(2)
h2 = indel["Mendelian_Concordance_Rate"].std().round(2)


data = {'MCR':[str(g),str(g2)], 'MCR_sd':[str(h),str(h2)]}

df = pd.DataFrame(data, index =['SNV', 'INDEL'])

df.to_csv('mendelian_summary.txt',sep="\t")




+ 137
- 0
codescripts/extract_tables.py View File

@@ -0,0 +1,137 @@
import json
import pandas as pd
from functools import reduce
import sys, argparse, os

parser = argparse.ArgumentParser(description="This script is to get information from multiqc and sentieon, output the raw fastq, bam and variants calling (precision and recall) quality metrics")


parser.add_argument('-quality', '--quality_yield', type=str, help='*.quality_yield.txt')
parser.add_argument('-depth', '--wgs_metrics', type=str, help='*deduped_WgsMetricsAlgo.txt')
parser.add_argument('-aln', '--aln_metrics', type=str, help='*_deduped_aln_metrics.txt')
parser.add_argument('-is', '--is_metrics', type=str, help='*_deduped_is_metrics.txt')
parser.add_argument('-hs', '--hs_metrics', type=str, help='*_deduped_hs_metrics.txt')


parser.add_argument('-fastqc', '--fastqc', type=str, help='multiqc_fastqc.txt')
parser.add_argument('-fastqscreen', '--fastqscreen', type=str, help='multiqc_fastq_screen.txt')
parser.add_argument('-hap', '--happy', type=str, help='multiqc_happy_data.json', required=True)

parser.add_argument('-project', '--project_name', type=str, help='project_name')

args = parser.parse_args()

if args.quality_yield:
# Rename input:
quality_yield_file = args.quality_yield
wgs_metrics_file = args.wgs_metrics
aln_metrics_file = args.aln_metrics
is_metrics_file = args.is_metrics
fastqc_file = args.fastqc
fastqscreen_file = args.fastqscreen
hap_file = args.happy
project_name = args.project_name
#############################################
# fastqc
fastqc = pd.read_table(fastqc_file)
# fastqscreen
dat = pd.read_table(fastqscreen_file)
fastqscreen = dat.loc[:, dat.columns.str.endswith('percentage')]
dat['Sample'] = [i.replace('_screen','') for i in dat['Sample']]
fastqscreen.insert(loc=0, column='Sample', value=dat['Sample'])
# pre-alignment
pre_alignment_dat = pd.merge(fastqc,fastqscreen,how="outer",left_on=['Sample'],right_on=['Sample'])
pre_alignment_dat['FastQC_mqc-generalstats-fastqc-total_sequences'] = pre_alignment_dat['FastQC_mqc-generalstats-fastqc-total_sequences']/1000000
del pre_alignment_dat['FastQC_mqc-generalstats-fastqc-percent_fails']
del pre_alignment_dat['FastQC_mqc-generalstats-fastqc-avg_sequence_length']
del pre_alignment_dat['ERCC percentage']
del pre_alignment_dat['Phix percentage']
del pre_alignment_dat['Mouse percentage']
pre_alignment_dat = pre_alignment_dat.round(2)
pre_alignment_dat.columns = ['Sample','%Dup','%GC','Total Sequences (million)','%Human','%EColi','%Adapter','%Vector','%rRNA','%Virus','%Yeast','%Mitoch','%No hits']
pre_alignment_dat.to_csv('pre_alignment.txt',sep="\t",index=0)
############################
dat = pd.read_table(aln_metrics_file,index_col=False)
dat['PCT_ALIGNED_READS'] = dat["PF_READS_ALIGNED"]/dat["TOTAL_READS"]
aln_metrics = dat[["Sample", "PCT_ALIGNED_READS","PF_MISMATCH_RATE"]]
aln_metrics = aln_metrics * 100
aln_metrics['Sample'] = [x[-1] for x in aln_metrics['Sample'].str.split('/')]
dat = pd.read_table(is_metrics_file,index_col=False)
is_metrics = dat[['Sample', 'MEDIAN_INSERT_SIZE']]
is_metrics['Sample'] = [x[-1] for x in is_metrics['Sample'].str.split('/')]
dat = pd.read_table(quality_yield_file,index_col=False)
dat['%Q20'] = dat['Q20_BASES']/dat['TOTAL_BASES']
dat['%Q30'] = dat['Q30_BASES']/dat['TOTAL_BASES']
quality_yield = dat[['Sample','%Q20','%Q30']]
quality_yield = quality_yield * 100
quality_yield['Sample'] = [x[-1] for x in quality_yield['Sample'].str.split('/')]
dat = pd.read_table(wgs_metrics_file,index_col=False)
wgs_metrics = dat[['Sample','MEDIAN_COVERAGE','PCT_1X', 'PCT_5X', 'PCT_10X','PCT_20X','PCT_30X']]
wgs_metrics['PCT_1X'] = wgs_metrics['PCT_1X'] * 100
wgs_metrics['PCT_5X'] = wgs_metrics['PCT_5X'] * 100
wgs_metrics['PCT_10X'] = wgs_metrics['PCT_10X'] * 100
wgs_metrics['PCT_20X'] = wgs_metrics['PCT_20X'] * 100
wgs_metrics['PCT_30X'] = wgs_metrics['PCT_30X'] * 100
wgs_metrics['Sample'] = [x[-1] for x in wgs_metrics['Sample'].str.split('/')]
hs_metrics = dat[['Sample','FOLD_80_BASE_PENALTY','PCT_USABLE_BASES_ON_TARGET']]
data_frames = [aln_metrics, is_metrics, quality_yield, wgs_metrics, hs_metrics]
post_alignment_dat = reduce(lambda left,right: pd.merge(left,right,on=['Sample'],how='outer'), data_frames)
post_alignment_dat.columns = ['Sample', '%Mapping', '%Mismatch Rate', 'Mendelian Insert Size','%Q20', '%Q30', 'Median Coverage', 'PCT_1X', 'PCT_5X', 'PCT_10X','PCT_20X','PCT_30X','Fold-80','On target bases rate']
post_alignment_dat = post_alignment_dat.round(2)
post_alignment_dat.to_csv('post_alignment.txt',sep="\t",index=0)
#########################################
# variants calling
with open(hap_file) as hap_json:
happy = json.load(hap_json)
dat =pd.DataFrame.from_records(happy)
dat = dat.loc[:, dat.columns.str.endswith('ALL')]
dat_transposed = dat.T
dat_transposed = dat_transposed.loc[:,['sample_id','QUERY.TOTAL','METRIC.Precision','METRIC.Recall']]
indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]]
snv = dat_transposed[['SNP' in s for s in dat_transposed.index]]
indel.reset_index(drop=True, inplace=True)
snv.reset_index(drop=True, inplace=True)
benchmark = pd.concat([snv, indel], axis=1)
benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'METRIC.Precision', 'METRIC.Recall']]
benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']
benchmark = benchmark[['Sample','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']]
benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
benchmark['SNV precision'] = benchmark['SNV precision'] * 100
benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100
benchmark['SNV recall'] = benchmark['SNV recall'] * 100
benchmark['INDEL recall'] = benchmark['INDEL recall']* 100
benchmark = benchmark.round(2)
benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)
else:
hap_file = args.happy
with open(hap_file) as hap_json:
happy = json.load(hap_json)
dat =pd.DataFrame.from_records(happy)
dat = dat.loc[:, dat.columns.str.endswith('ALL')]
dat_transposed = dat.T
dat_transposed = dat_transposed.loc[:,['sample_id','QUERY.TOTAL','METRIC.Precision','METRIC.Recall']]
indel = dat_transposed[['INDEL' in s for s in dat_transposed.index]]
snv = dat_transposed[['SNP' in s for s in dat_transposed.index]]
indel.reset_index(drop=True, inplace=True)
snv.reset_index(drop=True, inplace=True)
benchmark = pd.concat([snv, indel], axis=1)
benchmark = benchmark[["sample_id", 'QUERY.TOTAL', 'METRIC.Precision', 'METRIC.Recall']]
benchmark.columns = ['Sample','sample_id','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']
benchmark = benchmark[['Sample','SNV number','INDEL number','SNV precision','INDEL precision','SNV recall','INDEL recall']]
benchmark['SNV precision'] = benchmark['SNV precision'].astype(float)
benchmark['INDEL precision'] = benchmark['INDEL precision'].astype(float)
benchmark['SNV recall'] = benchmark['SNV recall'].astype(float)
benchmark['INDEL recall'] = benchmark['INDEL recall'].astype(float)
benchmark['SNV precision'] = benchmark['SNV precision'] * 100
benchmark['INDEL precision'] = benchmark['INDEL precision'] * 100
benchmark['SNV recall'] = benchmark['SNV recall'] * 100
benchmark['INDEL recall'] = benchmark['INDEL recall']* 100
benchmark = benchmark.round(2)
benchmark.to_csv('variants.calling.qc.txt',sep="\t",index=0)




+ 92
- 0
codescripts/extract_vcf_information.py View File

@@ -0,0 +1,92 @@
import sys,getopt
import os
import re
import fileinput
import pandas as pd

def usage():
print(
"""
Usage: python extract_vcf_information.py -i input_merged_vcf_file -o parsed_file

This script will extract SNVs and Indels information from the vcf files and output a tab-delimited files.

Input:
-i the selected vcf file

Output:
-o tab-delimited parsed file
""")

# select supported small variants
def process(oneLine):
line = oneLine.rstrip()
strings = line.strip().split('\t')
infoParsed = parse_INFO(strings[7])
formatKeys = strings[8].split(':')
formatValues = strings[9].split(':')
for i in range(0,len(formatKeys) -1) :
if formatKeys[i] == 'AD':
ra = formatValues[i].split(',')
infoParsed['RefDP'] = ra[0]
infoParsed['AltDP'] = ra[1]
if (int(ra[1]) + int(ra[0])) != 0:
infoParsed['af'] = float(int(ra[1])/(int(ra[1]) + int(ra[0])))
else:
pass
else:
infoParsed[formatKeys[i]] = formatValues[i]
infoParsed['chromo'] = strings[0]
infoParsed['pos'] = strings[1]
infoParsed['id'] = strings[2]
infoParsed['ref'] = strings[3]
infoParsed['alt'] = strings[4]
infoParsed['qual'] = strings[5]
return infoParsed


def parse_INFO(info):
strings = info.strip().split(';')
keys = []
values = []
for i in strings:
kv = i.split('=')
if kv[0] == 'DB':
keys.append('DB')
values.append('1')
elif kv[0] == 'AF':
pass
else:
keys.append(kv[0])
values.append(kv[1])
infoDict = dict(zip(keys, values))
return infoDict

opts,args = getopt.getopt(sys.argv[1:],"hi:o:")
for op,value in opts:
if op == "-i":
inputFile=value
elif op == "-o":
outputFile=value
elif op == "-h":
usage()
sys.exit()

if len(sys.argv[1:]) < 3:
usage()
sys.exit()

allDict = []
for line in fileinput.input(inputFile):
m = re.match('^\#',line)
if m is not None:
pass
else:
oneDict = process(line)
allDict.append(oneDict)

allTable = pd.DataFrame(allDict)

allTable.to_csv(outputFile,sep='\t',index=False)


+ 47
- 0
codescripts/filter_indel_over_50_cluster.py View File

@@ -0,0 +1,47 @@
import sys,getopt
from itertools import islice

over_50_outfile = open("indel_lenth_over_50.txt",'w')
less_50_outfile = open("benchmark.men.vote.diffbed.lengthlessthan50.txt","w")

def process(line):
strings = line.strip().split('\t')
#d5
if ',' in strings[6]:
d5 = strings[6].split(',')
d5_len = [len(i) for i in d5]
d5_alt = max(d5_len)
else:
d5_alt = len(strings[6])
#d6
if ',' in strings[14]:
d6 = strings[14].split(',')
d6_len = [len(i) for i in d6]
d6_alt = max(d6_len)
else:
d6_alt = len(strings[14])
#f7
if ',' in strings[22]:
f7 = strings[22].split(',')
f7_len = [len(i) for i in f7]
f7_alt = max(f7_len)
else:
f7_alt = len(strings[22])
#m8
if ',' in strings[30]:
m8 = strings[30].split(',')
m8_len = [len(i) for i in m8]
m8_alt = max(m8_len)
else:
m8_alt = len(strings[30])
#ref
ref_len = len(strings[34])
if (d5_alt > 50) or (d6_alt > 50) or (f7_alt > 50) or (m8_alt > 50) or (ref_len > 50):
over_50_outfile.write(line)
else:
less_50_outfile.write(line)


input_file = open(sys.argv[1])
for line in islice(input_file, 1, None):
process(line)

+ 43
- 0
codescripts/filter_indel_over_50_mendelian.py View File

@@ -0,0 +1,43 @@
from itertools import islice
import fileinput
import sys, argparse, os


# input arguments
parser = argparse.ArgumentParser(description="this script is to exclude indel over 50bp")

parser.add_argument('-i', '--mergedGVCF', type=str, help='merged gVCF txt with only chr, pos, ref, alt and genotypes', required=True)
parser.add_argument('-prefix', '--prefix', type=str, help='prefix of output file', required=True)


args = parser.parse_args()
input_dat = args.mergedGVCF
prefix = args.prefix


# output file
output_name = prefix + '.indel.lessthan50bp.txt'
outfile = open(output_name,'w')


def process(line):
strings = line.strip().split('\t')
#d5
if ',' in strings[3]:
alt = strings[3].split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(strings[3])
#ref
ref_len = len(strings[2])
if (alt_max > 50) or (ref_len > 50):
pass
else:
outfile.write(line)


for line in fileinput.input(input_dat):
process(line)



+ 416
- 0
codescripts/high_confidence_call_vote.py View File

@@ -0,0 +1,416 @@
from __future__ import division
import sys, argparse, os
import fileinput
import re
import pandas as pd
from operator import itemgetter
from collections import Counter
from itertools import islice
from numpy import *
import statistics

# input arguments
parser = argparse.ArgumentParser(description="this script is to count voting number")

parser.add_argument('-vcf', '--multi_sample_vcf', type=str, help='The VCF file you want to count the voting number', required=True)
parser.add_argument('-dup', '--dup_list', type=str, help='Duplication list', required=True)
parser.add_argument('-sample', '--sample_name', type=str, help='which sample of quartet', required=True)
parser.add_argument('-prefix', '--prefix', type=str, help='Prefix of output file name', required=True)

args = parser.parse_args()
multi_sample_vcf = args.multi_sample_vcf
dup_list = args.dup_list
prefix = args.prefix
sample_name = args.sample_name

vcf_header = '''##fileformat=VCFv4.2
##fileDate=20200331
##source=high_confidence_calls_intergration(choppy app)
##reference=GRCh38.d1.vd1
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region">
##INFO=<ID=DETECTED,Number=1,Type=Integer,Description="Number of detected votes">
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number of consnesus votes">
##INFO=<ID=FAM,Number=1,Type=Integer,Description="Number mendelian consisitent votes">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Sum depth of all samples">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Sum alternative depth of all samples">
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency, sum alternative depth / sum depth">
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Average genotype quality">
##FORMAT=<ID=QD,Number=1,Type=Float,Description="Average Variant Confidence/Quality by Depth">
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Average mapping quality">
##FORMAT=<ID=FS,Number=1,Type=Float,Description="Average Phred-scaled p-value using Fisher's exact test to detect strand bias">
##FORMAT=<ID=QUALI,Number=1,Type=Float,Description="Average variant quality">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''

vcf_header_all_sample = '''##fileformat=VCFv4.2
##fileDate=20200331
##reference=GRCh38.d1.vd1
##INFO=<ID=location,Number=1,Type=String,Description="Repeat region">
##INFO=<ID=DUP,Number=1,Type=Flag,Description="Duplicated variant records">
##INFO=<ID=DETECTED,Number=1,Type=Integer,Description="Number of detected votes">
##INFO=<ID=VOTED,Number=1,Type=Integer,Description="Number of consnesus votes">
##INFO=<ID=FAM,Number=1,Type=Integer,Description="Number mendelian consisitent votes">
##INFO=<ID=ALL_ALT,Number=1,Type=Float,Description="Sum of alternative reads of all samples">
##INFO=<ID=ALL_DP,Number=1,Type=Float,Description="Sum of depth of all samples">
##INFO=<ID=ALL_AF,Number=1,Type=Float,Description="Allele frequency of net alternatice reads and net depth">
##INFO=<ID=GQ_MEAN,Number=1,Type=Float,Description="Mean of genotype quality of all samples">
##INFO=<ID=QD_MEAN,Number=1,Type=Float,Description="Average Variant Confidence/Quality by Depth">
##INFO=<ID=MQ_MEAN,Number=1,Type=Float,Description="Mean of mapping quality of all samples">
##INFO=<ID=FS_MEAN,Number=1,Type=Float,Description="Average Phred-scaled p-value using Fisher's exact test to detect strand bias">
##INFO=<ID=QUAL_MEAN,Number=1,Type=Float,Description="Average variant quality">
##INFO=<ID=PCR,Number=1,Type=String,Description="Consensus of PCR votes">
##INFO=<ID=PCR_FREE,Number=1,Type=String,Description="Consensus of PCR-free votes">
##INFO=<ID=CONSENSUS,Number=1,Type=String,Description="Consensus calls">
##INFO=<ID=CONSENSUS_SEQ,Number=1,Type=String,Description="Consensus sequence">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=String,Description="Depth">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Alternative Depth">
##FORMAT=<ID=AF,Number=1,Type=String,Description="Allele frequency">
##FORMAT=<ID=GQ,Number=1,Type=String,Description="Genotype quality">
##FORMAT=<ID=MQ,Number=1,Type=String,Description="Mapping quality">
##FORMAT=<ID=TWINS,Number=1,Type=String,Description="1 is twins shared, 0 is twins discordant ">
##FORMAT=<ID=TRIO5,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL5 mendelian consistent, 0 is mendelian vioaltion">
##FORMAT=<ID=TRIO6,Number=1,Type=String,Description="1 is LCL7, LCL8 and LCL6 mendelian consistent, 0 is mendelian vioaltion">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''
# read in duplication list
dup = pd.read_table(dup_list,header=None)
var_dup = dup[0].tolist()

# output file
benchmark_file_name = prefix + '_voted.vcf'
benchmark_outfile = open(benchmark_file_name,'w')

all_sample_file_name = prefix + '_all_sample_information.vcf'
all_sample_outfile = open(all_sample_file_name,'w')

# write VCF
outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t' + sample_name + '_benchmark_calls\n'
benchmark_outfile.write(vcf_header)
benchmark_outfile.write(outputcolumn)

outputcolumn_all_sample = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+ \
'Quartet_DNA_BGI_SEQ2000_BGI_1_20180518\tQuartet_DNA_BGI_SEQ2000_BGI_2_20180530\tQuartet_DNA_BGI_SEQ2000_BGI_3_20180530\t' + \
'Quartet_DNA_BGI_T7_WGE_1_20191105\tQuartet_DNA_BGI_T7_WGE_2_20191105\tQuartet_DNA_BGI_T7_WGE_3_20191105\t' + \
'Quartet_DNA_ILM_Nova_ARD_1_20181108\tQuartet_DNA_ILM_Nova_ARD_2_20181108\tQuartet_DNA_ILM_Nova_ARD_3_20181108\t' + \
'Quartet_DNA_ILM_Nova_ARD_4_20190111\tQuartet_DNA_ILM_Nova_ARD_5_20190111\tQuartet_DNA_ILM_Nova_ARD_6_20190111\t' + \
'Quartet_DNA_ILM_Nova_BRG_1_20180930\tQuartet_DNA_ILM_Nova_BRG_2_20180930\tQuartet_DNA_ILM_Nova_BRG_3_20180930\t' + \
'Quartet_DNA_ILM_Nova_WUX_1_20190917\tQuartet_DNA_ILM_Nova_WUX_2_20190917\tQuartet_DNA_ILM_Nova_WUX_3_20190917\t' + \
'Quartet_DNA_ILM_XTen_ARD_1_20170403\tQuartet_DNA_ILM_XTen_ARD_2_20170403\tQuartet_DNA_ILM_XTen_ARD_3_20170403\t' + \
'Quartet_DNA_ILM_XTen_NVG_1_20170329\tQuartet_DNA_ILM_XTen_NVG_2_20170329\tQuartet_DNA_ILM_XTen_NVG_3_20170329\t' + \
'Quartet_DNA_ILM_XTen_WUX_1_20170216\tQuartet_DNA_ILM_XTen_WUX_2_20170216\tQuartet_DNA_ILM_XTen_WUX_3_20170216\n'
all_sample_outfile.write(vcf_header_all_sample)
all_sample_outfile.write(outputcolumn_all_sample)



#function
def replace_nan(strings_list):
updated_list = []
for i in strings_list:
if i == '.':
updated_list.append('.:.:.:.:.:.:.:.:.:.:.:.')
else:
updated_list.append(i)
return updated_list

def remove_dot(strings_list):
updated_list = []
for i in strings_list:
if i == '.':
pass
else:
updated_list.append(i)
return updated_list

def detected_number(strings):
gt = [x.split(':')[0] for x in strings]
percentage = 27 - gt.count('.')
return(str(percentage))

def vote_number(strings,consensus_call):
gt = [x.split(':')[0] for x in strings]
gt = [x.replace('.','0/0') for x in gt]
gt = list(map(gt_uniform,[i for i in gt]))
vote_num = gt.count(consensus_call)
return(str(vote_num))

def family_vote(strings,consensus_call):
gt = [x.split(':')[0] for x in strings]
gt = [x.replace('.','0/0') for x in gt]
gt = list(map(gt_uniform,[i for i in gt]))
mendelian = [':'.join(x.split(':')[1:4]) for x in strings]
indices = [i for i, x in enumerate(gt) if x == consensus_call]
matched_mendelian = itemgetter(*indices)(mendelian)
mendelian_num = matched_mendelian.count('1:1:1')
return(str(mendelian_num))

def gt_uniform(strings):
uniformed_gt = ''
allele1 = strings.split('/')[0]
allele2 = strings.split('/')[1]
if int(allele1) > int(allele2):
uniformed_gt = allele2 + '/' + allele1
else:
uniformed_gt = allele1 + '/' + allele2
return uniformed_gt

def decide_by_rep(strings):
consensus_rep = ''
mendelian = [':'.join(x.split(':')[1:4]) for x in strings]
gt = [x.split(':')[0] for x in strings]
gt = [x.replace('.','0/0') for x in gt]
# modified gt turn 2/1 to 1/2
gt = list(map(gt_uniform,[i for i in gt]))
# mendelian consistent?
mendelian_dict = Counter(mendelian)
highest_mendelian = mendelian_dict.most_common(1)
candidate_mendelian = highest_mendelian[0][0]
freq_mendelian = highest_mendelian[0][1]
if (candidate_mendelian == '1:1:1') and (freq_mendelian >= 2):
gt_num_dict = Counter(gt)
highest_gt = gt_num_dict.most_common(1)
candidate_gt = highest_gt[0][0]
freq_gt = highest_gt[0][1]
if (candidate_gt != '0/0') and (freq_gt >= 2):
consensus_rep = candidate_gt
elif (candidate_gt == '0/0') and (freq_gt >= 2):
consensus_rep = '0/0'
else:
consensus_rep = 'inconGT'
elif (candidate_mendelian == '') and (freq_mendelian >= 2):
consensus_rep = 'noInfo'
else:
consensus_rep = 'inconMen'
return consensus_rep


def main():
for line in fileinput.input(multi_sample_vcf):
headline = re.match('^\#',line)
if headline is not None:
pass
else:
line = line.strip()
strings = line.split('\t')
variant_id = '_'.join([strings[0],strings[1]])
# check if the variants location is duplicated
if variant_id in var_dup:
strings[7] = strings[7] + ';DUP'
outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(outLine)
else:
# pre-define
pcr_consensus = '.'
pcr_free_consensus = '.'
consensus_call = '.'
consensus_alt_seq = '.'
# pcr
strings[9:] = replace_nan(strings[9:])
pcr = itemgetter(*[9,10,11,27,28,29,30,31,32,33,34,35])(strings)
SEQ2000 = decide_by_rep(pcr[0:3])
XTen_ARD = decide_by_rep(pcr[3:6])
XTen_NVG = decide_by_rep(pcr[6:9])
XTen_WUX = decide_by_rep(pcr[9:12])
sequence_site = [SEQ2000,XTen_ARD,XTen_NVG,XTen_WUX]
sequence_dict = Counter(sequence_site)
highest_sequence = sequence_dict.most_common(1)
candidate_sequence = highest_sequence[0][0]
freq_sequence = highest_sequence[0][1]
if freq_sequence > 2:
pcr_consensus = candidate_sequence
else:
pcr_consensus = 'inconSequenceSite'
# pcr-free
pcr_free = itemgetter(*[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26])(strings)
T7_WGE = decide_by_rep(pcr_free[0:3])
Nova_ARD_1 = decide_by_rep(pcr_free[3:6])
Nova_ARD_2 = decide_by_rep(pcr_free[6:9])
Nova_BRG = decide_by_rep(pcr_free[9:12])
Nova_WUX = decide_by_rep(pcr_free[12:15])
sequence_site = [T7_WGE,Nova_ARD_1,Nova_ARD_2,Nova_BRG,Nova_WUX]
highest_sequence = sequence_dict.most_common(1)
candidate_sequence = highest_sequence[0][0]
freq_sequence = highest_sequence[0][1]
if freq_sequence > 3:
pcr_free_consensus = candidate_sequence
else:
pcr_free_consensus = 'inconSequenceSite'
# pcr and pcr-free
tag = ['inconGT','noInfo','inconMen','inconSequenceSite']
if (pcr_consensus == pcr_free_consensus) and (pcr_consensus not in tag) and (pcr_consensus != '0/0'):
consensus_call = pcr_consensus
VOTED = vote_number(strings[9:],consensus_call)
strings[7] = strings[7] + ';VOTED=' + VOTED
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
FAM = family_vote(strings[9:],consensus_call)
strings[7] = strings[7] + ';FAM=' + FAM
# Delete multiple alternative genotype to necessary expression
alt = strings[4]
alt_gt = alt.split(',')
if len(alt_gt) > 1:
allele1 = consensus_call.split('/')[0]
allele2 = consensus_call.split('/')[1]
if allele1 == '0':
allele2_seq = alt_gt[int(allele2) - 1]
consensus_alt_seq = allele2_seq
consensus_call = '0/1'
else:
allele1_seq = alt_gt[int(allele1) - 1]
allele2_seq = alt_gt[int(allele2) - 1]
if int(allele1) > int(allele2):
consensus_alt_seq = allele2_seq + ',' + allele1_seq
consensus_call = '1/2'
elif int(allele1) < int(allele2):
consensus_alt_seq = allele1_seq + ',' + allele2_seq
consensus_call = '1/2'
else:
consensus_alt_seq = allele1_seq
consensus_call = '1/1'
else:
consensus_alt_seq = alt
# GT:DP:ALT:AF:GQ:QD:MQ:FS:QUAL
# GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL:rawGT
# DP
DP = [x.split(':')[4] for x in strings[9:]]
DP = remove_dot(DP)
DP = [int(x) for x in DP]
ALL_DP = sum(DP)
# AF
ALT = [x.split(':')[5] for x in strings[9:]]
ALT = remove_dot(ALT)
ALT = [int(x) for x in ALT]
ALL_ALT = sum(ALT)
ALL_AF = round(ALL_ALT/ALL_DP,2)
# GQ
GQ = [x.split(':')[7] for x in strings[9:]]
GQ = remove_dot(GQ)
GQ = [int(x) for x in GQ]
GQ_MEAN = round(mean(GQ),2)
# QD
QD = [x.split(':')[8] for x in strings[9:]]
QD = remove_dot(QD)
QD = [float(x) for x in QD]
QD_MEAN = round(mean(QD),2)
# MQ
MQ = [x.split(':')[9] for x in strings[9:]]
MQ = remove_dot(MQ)
MQ = [float(x) for x in MQ]
MQ_MEAN = round(mean(MQ),2)
# FS
FS = [x.split(':')[10] for x in strings[9:]]
FS = remove_dot(FS)
FS = [float(x) for x in FS]
FS_MEAN = round(mean(FS),2)
# QUAL
QUAL = [x.split(':')[11] for x in strings[9:]]
QUAL = remove_dot(QUAL)
QUAL = [float(x) for x in QUAL]
QUAL_MEAN = round(mean(QUAL),2)
# benchmark output
output_format = consensus_call + ':' + str(ALL_DP) + ':' + str(ALL_ALT) + ':' + str(ALL_AF) + ':' + str(GQ_MEAN) + ':' + str(QD_MEAN) + ':' + str(MQ_MEAN) + ':' + str(FS_MEAN) + ':' + str(QUAL_MEAN)
outLine = strings[0] + '\t' + strings[1] + '\t' + strings[2] + '\t' + strings[3] + '\t' + consensus_alt_seq + '\t' + '.' + '\t' + '.' + '\t' + strings[7] + '\t' + 'GT:DP:ALT:AF:GQ:QD:MQ:FS:QUAL' + '\t' + output_format + '\n'
benchmark_outfile.write(outLine)
# all sample output
strings[7] = strings[7] + ';ALL_ALT=' + str(ALL_ALT) + ';ALL_DP=' + str(ALL_DP) + ';ALL_AF=' + str(ALL_AF) \
+ ';GQ_MEAN=' + str(GQ_MEAN) + ';QD_MEAN=' + str(QD_MEAN) + ';MQ_MEAN=' + str(MQ_MEAN) + ';FS_MEAN=' + str(FS_MEAN) \
+ ';QUAL_MEAN=' + str(QUAL_MEAN) + ';PCR=' + consensus_call + ';PCR_FREE=' + consensus_call + ';CONSENSUS=' + consensus_call \
+ ';CONSENSUS_SEQ=' + consensus_alt_seq
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif (pcr_consensus in tag) and (pcr_free_consensus in tag):
consensus_call = 'filtered'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif ((pcr_consensus == '0/0') or (pcr_consensus in tag)) and ((pcr_free_consensus not in tag) and (pcr_free_consensus != '0/0')):
consensus_call = 'pcr-free-speicifc'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif ((pcr_consensus != '0/0') or (pcr_consensus not in tag)) and ((pcr_free_consensus in tag) and (pcr_free_consensus == '0/0')):
consensus_call = 'pcr-speicifc'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call + ';PCR=' + pcr_consensus + ';PCR_FREE=' + pcr_free_consensus
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
elif (pcr_consensus == '0/0') and (pcr_free_consensus == '0/0'):
consensus_call = 'confirm for parents'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)
else:
consensus_call = 'filtered'
DETECTED = detected_number(strings[9:])
strings[7] = strings[7] + ';DETECTED=' + DETECTED
strings[7] = strings[7] + ';CONSENSUS=' + consensus_call
all_sample_outLine = '\t'.join(strings) + '\n'
all_sample_outfile.write(all_sample_outLine)

if __name__ == '__main__':
main()













+ 42
- 0
codescripts/high_voted_mendelian_bed.py View File

@@ -0,0 +1,42 @@
import pandas as pd
import sys, argparse, os
mut = pd.read_table(sys.argv[1])
outFile = open(sys.argv[2],'w')
for row in mut.itertuples():
#d5
if ',' in row.V4:
alt = row.V4.split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(row.V4)
#d6
alt = alt_max
ref = row.V3
pos = int(row.V2)
if len(ref) == 1 and alt == 1:
StartPos = int(pos) -1
EndPos = int(pos)
cate = 'SNV'
elif len(ref) > alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (len(ref) - 1)
cate = 'INDEL'
elif alt > len(ref):
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
elif len(ref) == alt:
StartPos = int(pos) - 1
EndPos = int(pos) + (alt - 1)
cate = 'INDEL'
outline = row.V1 + '\t' + str(StartPos) + '\t' + str(EndPos) + '\t' + str(row.V2) + '\t' + cate + '\n'
outFile.write(outline)









+ 50
- 0
codescripts/how_many_samples.py View File

@@ -0,0 +1,50 @@
import pandas as pd
import sys, argparse, os
from operator import itemgetter

parser = argparse.ArgumentParser(description="This script is to get how many samples")

parser.add_argument('-sample', '--sample', type=str, help='quartet_sample', required=True)
parser.add_argument('-rep', '--rep', type=str, help='quartet_rep', required=True)
args = parser.parse_args()

# Rename input:
sample = args.sample
rep = args.rep

quartet_sample = pd.read_table(sample,header=None)
quartet_sample = list(quartet_sample[0])
quartet_rep = pd.read_table(rep.header=None)
quartet_rep = quartet_rep[0]

#tags
sister_tag = 'false'
quartet_tag = 'false'

quartet_rep_unique = list(set(quartet_rep))

single_rep = [i for i in range(len(quartet_rep)) if quartet_rep[i] == quartet_rep_unique[0]]
single_batch_sample = itemgetter(*single_rep)(quartet_sample)

num = len(single_batch_sample)
if num == 1:
sister_tag = 'false'
quartet_tag = 'false'
elif num == 2:
if set(single_batch_sample) == set(['LCL5','LCL6']):
sister_tag = 'true'
quartet_tag = 'false'
elif num == 3:
if ('LCL5' in single_batch_sample) and ('LCL6' in single_batch_sample):
sister_tag = 'true'
quartet_tag = 'false'
elif num == 4:
if set(single_batch_sample) == set(['LCL5','LCL6','LCL7','LCL8']):
sister_tag = 'false'
quartet_tag = 'true'

sister_outfile = open('sister_tag','w')
quartet_outfile = open('quartet_tag','w')

sister_outfile.write(sister_tag)
quartet_outfile.write(quartet_tag)

+ 42
- 0
codescripts/lcl5_all_called_variants.py View File

@@ -0,0 +1,42 @@
from __future__ import division
import sys, argparse, os
import pandas as pd
from collections import Counter

# input arguments
parser = argparse.ArgumentParser(description="this script is to merge mendelian and vcfinfo, and extract high_confidence_calls")
parser.add_argument('-vcf', '--vcf', type=str, help='merged multiple sample vcf', required=True)


args = parser.parse_args()
vcf = args.vcf

lcl5_outfile = open('LCL5_all_variants.txt','w')
filtered_outfile = open('LCL5_filtered_variants.txt','w')

vcf_dat = pd.read_table(vcf)


for row in vcf_dat.itertuples():
lcl5_list = [row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_1_20180518,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_2_20180530,row.Quartet_DNA_BGI_SEQ2000_BGI_LCL5_3_20180530, \
row.Quartet_DNA_BGI_T7_WGE_LCL5_1_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_2_20191105,row.Quartet_DNA_BGI_T7_WGE_LCL5_3_20191105, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_1_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_2_20181108,row.Quartet_DNA_ILM_Nova_ARD_LCL5_3_20181108, \
row.Quartet_DNA_ILM_Nova_ARD_LCL5_4_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_5_20190111,row.Quartet_DNA_ILM_Nova_ARD_LCL5_6_20190111, \
row.Quartet_DNA_ILM_Nova_BRG_LCL5_1_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_2_20180930,row.Quartet_DNA_ILM_Nova_BRG_LCL5_3_20180930, \
row.Quartet_DNA_ILM_Nova_WUX_LCL5_1_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_2_20190917,row.Quartet_DNA_ILM_Nova_WUX_LCL5_3_20190917, \
row.Quartet_DNA_ILM_XTen_ARD_LCL5_1_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_2_20170403,row.Quartet_DNA_ILM_XTen_ARD_LCL5_3_20170403, \
row.Quartet_DNA_ILM_XTen_NVG_LCL5_1_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_2_20170329,row.Quartet_DNA_ILM_XTen_NVG_LCL5_3_20170329, \
row.Quartet_DNA_ILM_XTen_WUX_LCL5_1_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_2_20170216,row.Quartet_DNA_ILM_XTen_WUX_LCL5_3_20170216]
lcl5_vcf_gt = [x.split(':')[0] for x in lcl5_list]
lcl5_gt=[item.replace('./.', '0/0') for item in lcl5_vcf_gt]
gt_dict = Counter(lcl5_gt)
highest_gt = gt_dict.most_common(1)
candidate_gt = highest_gt[0][0]
freq_gt = highest_gt[0][1]
output = row._1 + '\t' + str(row.POS) + '\t' + '\t'.join(lcl5_gt) + '\n'
if (candidate_gt == '0/0') and (freq_gt == 27):
filtered_outfile.write(output)
else:
lcl5_outfile.write(output)



+ 6
- 0
codescripts/linux_command.sh View File

@@ -0,0 +1,6 @@
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$7"\t.\t.\t.\tGT\t"$6}' | grep -v '2_y' > LCL5.body
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$15"\t.\t.\t.\tGT\t"$14}' | grep -v '2_y' > LCL6.body
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$23"\t.\t.\t.\tGT\t"$22}' | grep -v '2_y' > LCL7.body
cat benchmark.men.vote.diffbed.filtered | awk '{print $1"\t"$2"\t"".""\t"$35"\t"$31"\t.\t.\t.\tGT\t"$30}' | grep -v '2_y' > LCL8.body

for i in *txt; do cat $i | awk '{ if ((length($3) == 1) && (length($4) == 1)) { print } }' | grep -v '#' | cut -f3,4 | sort |uniq -c | sed 's/\s\+/\t/g' | cut -f2 > $i.mut; done

+ 129
- 0
codescripts/merge_mendelian_vcfinfo.py View File

@@ -0,0 +1,129 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput
import re

# input arguments
parser = argparse.ArgumentParser(description="this script is to get final high confidence calls and information of all replicates")

parser.add_argument('-vcfInfo', '--vcfInfo', type=str, help='The txt file of variants information, this file is named as prefix__variant_quality_location.txt', required=True)
parser.add_argument('-mendelianInfo', '--mendelianInfo', type=str, help='The merged mendelian information of all samples', required=True)
parser.add_argument('-sample', '--sample_name', type=str, help='which sample of quartet', required=True)


args = parser.parse_args()
vcfInfo = args.vcfInfo
mendelianInfo = args.mendelianInfo
sample_name = args.sample_name


#GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL

vcf_header = '''##fileformat=VCFv4.2
##fileDate=20200331
##source=high_confidence_calls_intergration(choppy app)
##reference=GRCh38.d1.vd1
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=TWINS,Number=1,Type=Flag,Description="1 for sister consistent, 0 for sister different">
##FORMAT=<ID=TRIO5,Number=1,Type=Flag,Description="1 for LCL7, LCL8 and LCL5 mendelian consistent, 0 for family violation">
##FORMAT=<ID=TRIO6,Number=1,Type=Flag,Description="1 for LCL7, LCL8 and LCL6 mendelian consistent, 0 for family violation">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Depth">
##FORMAT=<ID=ALT,Number=1,Type=Integer,Description="Alternative Depth">
##FORMAT=<ID=AF,Number=1,Type=Float,Description="Allele frequency">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype quality">
##FORMAT=<ID=QD,Number=1,Type=Float,Description="Variant Confidence/Quality by Depth">
##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Mapping quality">
##FORMAT=<ID=FS,Number=1,Type=Float,Description="Phred-scaled p-value using Fisher's exact test to detect strand bias">
##FORMAT=<ID=QUAL,Number=1,Type=Float,Description="variant quality">
##contig=<ID=chr1,length=248956422>
##contig=<ID=chr2,length=242193529>
##contig=<ID=chr3,length=198295559>
##contig=<ID=chr4,length=190214555>
##contig=<ID=chr5,length=181538259>
##contig=<ID=chr6,length=170805979>
##contig=<ID=chr7,length=159345973>
##contig=<ID=chr8,length=145138636>
##contig=<ID=chr9,length=138394717>
##contig=<ID=chr10,length=133797422>
##contig=<ID=chr11,length=135086622>
##contig=<ID=chr12,length=133275309>
##contig=<ID=chr13,length=114364328>
##contig=<ID=chr14,length=107043718>
##contig=<ID=chr15,length=101991189>
##contig=<ID=chr16,length=90338345>
##contig=<ID=chr17,length=83257441>
##contig=<ID=chr18,length=80373285>
##contig=<ID=chr19,length=58617616>
##contig=<ID=chr20,length=64444167>
##contig=<ID=chr21,length=46709983>
##contig=<ID=chr22,length=50818468>
##contig=<ID=chrX,length=156040895>
'''

# output file
file_name = sample_name + '_mendelian_vcfInfo.vcf'
outfile = open(file_name,'w')

outputcolumn = '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t' + sample_name + '\n'
outfile.write(vcf_header)
outfile.write(outputcolumn)

# input files
vcf_info = pd.read_table(vcfInfo)
mendelian_info = pd.read_table(mendelianInfo)

merged_df = pd.merge(vcf_info, mendelian_info, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])
merged_df = merged_df.fillna('.')

#
def parse_INFO(info):
strings = info.strip().split(';')
keys = []
values = []
for i in strings:
kv = i.split('=')
if kv[0] == 'DB':
keys.append('DB')
values.append('1')
else:
keys.append(kv[0])
values.append(kv[1])
infoDict = dict(zip(keys, values))
return infoDict
#
for row in merged_df.itertuples():
if row[18] != '.':
# format
# GT:TWINS:TRIO5:TRIO6:DP:AF:GQ:QD:MQ:FS:QUAL
FORMAT_x = row[10].split(':')
ALT = int(FORMAT_x[1].split(',')[1])
if int(FORMAT_x[2]) != 0:
AF = round(ALT/int(FORMAT_x[2]),2)
else:
AF = '.'
INFO_x = parse_INFO(row.INFO_x)
if FORMAT_x[2] == '0':
INFO_x['QD'] = '.'
else:
pass
FORMAT = row[18] + ':' + FORMAT_x[2] + ':' + str(ALT) + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x)
# outline
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_y + '\t' + row.ALT_y + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL' + '\t' + FORMAT + '\n'
else:
rawGT = row[10].split(':')
FORMAT_x = row[10].split(':')
ALT = int(FORMAT_x[1].split(',')[1])
if int(FORMAT_x[2]) != 0:
AF = round(ALT/int(FORMAT_x[2]),2)
else:
AF = '.'
INFO_x = parse_INFO(row.INFO_x)
if FORMAT_x[2] == '0':
INFO_x['QD'] = '.'
else:
pass
FORMAT = '.:.:.:.' + ':' + FORMAT_x[2] + ':' + str(ALT) + ':' + str(AF) + ':' + FORMAT_x[3] + ':' + INFO_x['QD'] + ':' + INFO_x['MQ'] + ':' + INFO_x['FS'] + ':' + str(row.QUAL_x) + ':' + rawGT[0]
# outline
outline = row._1 + '\t' + str(row.POS) + '\t' + row.ID_x + '\t' + row.REF_x + '\t' + row.ALT_x + '\t' + '.' + '\t' + '.' + '\t' + '.' + '\t' + 'GT:TWINS:TRIO5:TRIO6:DP:ALT:AF:GQ:QD:MQ:FS:QUAL:rawGT' + '\t' + FORMAT + '\n'
outfile.write(outline)

+ 71
- 0
codescripts/merge_two_family.py View File

@@ -0,0 +1,71 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput
import re

# input arguments
parser = argparse.ArgumentParser(description="this script is to extract mendelian concordance information")

parser.add_argument('-LCL5', '--LCL5', type=str, help='LCL5 family info', required=True)
parser.add_argument('-LCL6', '--LCL6', type=str, help='LCL6 family info', required=True)
parser.add_argument('-family', '--family', type=str, help='family name', required=True)


args = parser.parse_args()
lcl5 = args.LCL5
lcl6 = args.LCL6
family = args.family


# output file
family_name = family + '.txt'

family_file = open(family_name,'w')

# input files
lcl5_dat = pd.read_table(lcl5)
lcl6_dat = pd.read_table(lcl6)

merged_df = pd.merge(lcl5_dat, lcl6_dat, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])

def alt_seq(alt, genotype):
if genotype == './.':
seq = './.'
elif genotype == '0/0':
seq = '0/0'
else:
alt = alt.split(',')
genotype = genotype.split('/')
if genotype[0] == '0':
allele2 = alt[int(genotype[1]) - 1]
seq = '0/' + allele2
else:
allele1 = alt[int(genotype[0]) - 1]
allele2 = alt[int(genotype[1]) - 1]
seq = allele1 + '/' + allele2
return seq

for row in merged_df.itertuples():
# correction of multiallele
if pd.isnull(row.INFO_x) == True or pd.isnull(row.INFO_y) == True:
mendelian = '.'
else:
lcl5_seq = alt_seq(row.ALT_x, row.CHILD_x)
lcl6_seq = alt_seq(row.ALT_y, row.CHILD_y)
if lcl5_seq == lcl6_seq:
mendelian = '1'
else:
mendelian = '0'
if pd.isnull(row.INFO_x) == True:
mendelian = mendelian + ':.'
else:
mendelian = mendelian + ':' + row.INFO_x.split('=')[1]
if pd.isnull(row.INFO_y) == True:
mendelian = mendelian + ':.'
else:
mendelian = mendelian + ':' + row.INFO_y.split('=')[1]


outline = row._1 + '\t' + str(row.POS) + '\t' + mendelian + '\n'
family_file.write(outline)

+ 161
- 0
codescripts/merge_two_family_with_genotype.py View File

@@ -0,0 +1,161 @@
from __future__ import division
import pandas as pd
import sys, argparse, os
import fileinput
import re

# input arguments
parser = argparse.ArgumentParser(description="this script is to extract mendelian concordance information")

parser.add_argument('-LCL5', '--LCL5', type=str, help='LCL5 family info', required=True)
parser.add_argument('-LCL6', '--LCL6', type=str, help='LCL6 family info', required=True)
parser.add_argument('-genotype', '--genotype', type=str, help='Genotype information of a set of four family members', required=True)
parser.add_argument('-family', '--family', type=str, help='family name', required=True)


args = parser.parse_args()
lcl5 = args.LCL5
lcl6 = args.LCL6
genotype = args.genotype
family = args.family


# output file
family_name = family + '.txt'

family_file = open(family_name,'w')

summary_name = family + '.summary.txt'

summary_file = open(summary_name,'w')

# input files
lcl5_dat = pd.read_table(lcl5)
lcl6_dat = pd.read_table(lcl6)
genotype_dat = pd.read_table(genotype)
merged_df = pd.merge(lcl5_dat, lcl6_dat, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])
merged_genotype_df = pd.merge(merged_df, genotype_dat, how='outer', left_on=['#CHROM','POS'], right_on = ['#CHROM','POS'])
merged_genotype_df = merged_genotype_df.dropna()

merged_genotype_df_sub = merged_genotype_df.iloc[:,[0,1,23,24,29,30,31,32,7,17]]
merged_genotype_df_sub.columns = ['CHROM', 'POS', 'REF', 'ALT','LCL5','LCL6','LCL7','LCL8', 'TRIO5', 'TRIO6']

indel_sister_same = 0
indel_sister_diff = 0
indel_family_all = 0
indel_family_mendelian = 0

snv_sister_same = 0
snv_sister_diff = 0
snv_family_all = 0
snv_family_mendelian = 0


for row in merged_genotype_df_sub.itertuples():
# indel or snv
if ',' in row.ALT:
alt = row.ALT.split(',')
alt_len = [len(i) for i in alt]
alt_max = max(alt_len)
else:
alt_max = len(row.ALT)
alt = alt_max
ref = row.REF
if len(ref) == 1 and alt == 1:
cate = 'SNV'
elif len(ref) > alt:
cate = 'INDEL'
elif alt > len(ref):
cate = 'INDEL'
elif len(ref) == alt:
cate = 'INDEL'
# sister
if row.LCL5 == row.LCL6:
if row.LCL5 == './.':
mendelian = 'noInfo'
sister_count = "no"
elif row.LCL5 == '0/0':
mendelian = 'Ref'
sister_count = "no"
else:
mendelian = '1'
sister_count = "yes_same"
else:
mendelian = '0'
if (row.LCL5 == './.' or row.LCL5 == '0/0') and (row.LCL6 == './.' or row.LCL6 == '0/0'):
sister_count = "no"
else:
sister_count = "yes_diff"
# family trio5
if row.LCL5 == row.LCL7 == row.LCL8 == './.':
mendelian = mendelian + ':noInfo'
elif row.LCL5 == row.LCL7 == row.LCL8 == '0/0':
mendelian = mendelian + ':Ref'
elif pd.isnull(row.TRIO5) == True:
mendelian = mendelian + ':unVBT'
else:
mendelian = mendelian + ':' + row.TRIO5.split('=')[1]
# family trio6
if row.LCL6 == row.LCL7 == row.LCL8 == './.':
mendelian = mendelian + ':noInfo'
elif row.LCL6 == row.LCL7 == row.LCL8 == '0/0':
mendelian = mendelian + ':Ref'
elif pd.isnull(row.TRIO6) == True:
mendelian = mendelian + ':unVBT'
else:
mendelian = mendelian + ':' + row.TRIO6.split('=')[1]
# not count into family
if (row.LCL5 == './.' or row.LCL5 == '0/0') and (row.LCL6 == './.' or row.LCL6 == '0/0') and (row.LCL7 == './.' or row.LCL7 == '0/0') and (row.LCL8 == './.' or row.LCL8 == '0/0'):
mendelian_count = "no"
else:
mendelian_count = "yes"
outline = str(row.CHROM) + '\t' + str(row.POS) + '\t' + str(row.REF) + '\t' + str(row.ALT) + '\t' + str(cate) + '\t' + str(row.LCL5) + '\t' + str(row.LCL6) + '\t' + str(row.LCL7) + '\t' + str(row.LCL8) + '\t' + str(row.TRIO5) + '\t' + str(row.TRIO6) + '\t' + str(mendelian) + '\t' + str(mendelian_count) + '\t' + str(sister_count) + '\n'
family_file.write(outline)
if cate == 'SNV':
if sister_count == 'yes_same':
snv_sister_same += 1
elif sister_count == 'yes_diff':
snv_sister_diff += 1
else:
pass
if mendelian_count == 'yes':
snv_family_all += 1
else:
pass
if mendelian == '1:1:1':
snv_family_mendelian += 1
elif mendelian == 'Ref:1:1':
snv_family_mendelian += 1
else:
pass
elif cate == 'INDEL':
if sister_count == 'yes_same':
indel_sister_same += 1
elif sister_count == 'yes_diff':
indel_sister_diff += 1
else:
pass
if mendelian_count == 'yes':
indel_family_all += 1
else:
pass
if mendelian == '1:1:1':
indel_family_mendelian += 1
elif mendelian == 'Ref:1:1':
indel_family_mendelian += 1
else:
pass

snv_sister = snv_sister_same/(snv_sister_same + snv_sister_diff)
indel_sister = indel_sister_same/(indel_sister_same + indel_sister_diff)
snv_quartet = snv_family_mendelian/snv_family_all
indel_quartet = indel_family_mendelian/indel_family_all
outcolumn = 'Family\tReproducibility_D5_D6\tMendelian_Concordance_Quartet\n'
indel_outResult = family + '.INDEL' + '\t' + str(indel_sister) + '\t' + str(indel_quartet) + '\n'
snv_outResult = family + '.SNV' + '\t' + str(snv_sister) + '\t' + str(snv_quartet) + '\n'
summary_file.write(outcolumn)
summary_file.write(indel_outResult)
summary_file.write(snv_outResult)




+ 109
- 0
codescripts/oneClass.py View File

@@ -0,0 +1,109 @@
# import modules
import numpy as np
import pandas as pd
from sklearn import svm
from sklearn import preprocessing
import sys, argparse, os
from vcf2bed import position_to_bed,padding_region



parser = argparse.ArgumentParser(description="this script is to preform one calss svm on each chromosome")

parser.add_argument('-train', '--trainDataset', type=str, help='training dataset generated from extracting vcf information part, with mutaitons supported by callsets', required=True)
parser.add_argument('-test', '--testDataset', type=str, help='testing dataset generated from extracting vcf information part, with mutaitons not called by all callsets', required=True)
parser.add_argument('-name', '--sampleName', type=str, help='sample name for output file name', required=True)

args = parser.parse_args()

# Rename input:
train_input = args.trainDataset
test_input = args.testDataset
sample_name = args.sampleName

# default columns, which will be included in the included in the calssifier
chromosome = ['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15' ,'chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX','chrY']
feature_heter_cols = ['AltDP','BaseQRankSum','DB','DP','FS','GQ','MQ','MQRankSum','QD','ReadPosRankSum','RefDP','SOR','af']
feature_homo_cols = ['AltDP','DB','DP','FS','GQ','MQ','QD','RefDP','SOR','af']


# import datasets sepearate the records with or without BaseQRankSum annotation, etc.
def load_dat(dat_file_name):
dat = pd.read_table(dat_file_name)
dat['DB'] = dat['DB'].fillna(0)
dat = dat[dat['DP'] != 0]
dat['af'] = dat['AltDP']/(dat['AltDP'] + dat['RefDP'])
homo_rows = dat[dat['BaseQRankSum'].isnull()]
heter_rows = dat[dat['BaseQRankSum'].notnull()]
return homo_rows,heter_rows


train_homo,train_heter = load_dat(train_input)
test_homo,test_heter = load_dat(test_input)
clf = svm.OneClassSVM(nu=0.05,kernel='rbf', gamma='auto_deprecated',cache_size=500)

def prepare_dat(train_dat,test_dat,feature_cols,chromo):
chr_train = train_dat[train_dat['chromo'] == chromo]
chr_test = test_dat[test_dat['chromo'] == chromo]
train_dat = chr_train.loc[:,feature_cols]
test_dat = chr_test.loc[:,feature_cols]
train_dat_scaled = preprocessing.scale(train_dat)
test_dat_scaled = preprocessing.scale(test_dat)
return chr_test,train_dat_scaled,test_dat_scaled

def oneclass(X_train,X_test,chr_test):
clf.fit(X_train)
y_pred_test = clf.predict(X_test)
test_true_dat = chr_test[y_pred_test == 1]
test_false_dat = chr_test[y_pred_test == -1]
return test_true_dat,test_false_dat

predicted_true = pd.DataFrame(columns=train_homo.columns)
predicted_false = pd.DataFrame(columns=train_homo.columns)

for chromo in chromosome:
# homo datasets
chr_test_homo,X_train_homo,X_test_homo = prepare_dat(train_homo,test_homo,feature_homo_cols,chromo)
test_true_homo,test_false_homo = oneclass(X_train_homo,X_test_homo,chr_test_homo)
predicted_true = predicted_true.append(test_true_homo)
predicted_false = predicted_false.append(test_false_homo)
# heter datasets
chr_test_heter,X_train_heter,X_test_heter = prepare_dat(train_heter,test_heter,feature_heter_cols,chromo)
test_true_heter,test_false_heter = oneclass(X_train_heter,X_test_heter,chr_test_heter)
predicted_true = predicted_true.append(test_true_heter)
predicted_false = predicted_false.append(test_false_heter)

predicted_true_filename = sample_name + '_predicted_true.txt'
predicted_false_filename = sample_name + '_predicted_false.txt'

predicted_true.to_csv(predicted_true_filename,sep='\t',index=False)
predicted_false.to_csv(predicted_false_filename,sep='\t',index=False)

# output the bed file and padding bed region 50bp

predicted_true_bed_filename = sample_name + '_predicted_true.bed'
predicted_false_bed_filename = sample_name + '_predicted_false.bed'
padding_filename = sample_name + '_padding.bed'

predicted_true_bed = open(predicted_true_bed_filename,'w')
predicted_false_bed = open(predicted_false_bed_filename,'w')
padding = open(padding_filename,'w')

#
for index,row in predicted_false.iterrows():
chromo,pos1,pos2 = position_to_bed(row['chromo'],row['pos'],row['ref'],row['alt'])
outline_pos = chromo + '\t' + str(pos1) + '\t' + str(pos2) + '\n'
predicted_false_bed.write(outline_pos)
chromo,pad_pos1,pad_pos2,pad_pos3,pad_pos4 = padding_region(chromo,pos1,pos2,50)
outline_pad_1 = chromo + '\t' + str(pad_pos1) + '\t' + str(pad_pos2) + '\n'
outline_pad_2 = chromo + '\t' + str(pad_pos3) + '\t' + str(pad_pos4) + '\n'
padding.write(outline_pad_1)
padding.write(outline_pad_2)

for index,row in predicted_true.iterrows():
chromo,pos1,pos2 = position_to_bed(row['chromo'],row['pos'],row['ref'],row['alt'])
outline_pos = chromo + '\t' + str(pos1) + '\t' + str(pos2) + '\n'
predicted_true_bed.write(outline_pos)



+ 101
- 0
codescripts/post-alignment.py View File

@@ -0,0 +1,101 @@
import json
import pandas as pd
import sys, argparse, os
import statistics

parser = argparse.ArgumentParser(description="This script is to summary information for pre-alignment QC")

parser.add_argument('-general', '--general_stat', type=str, help='multiqc_general_stats.txt', required=True)
parser.add_argument('-is', '--is_metrics', type=str, help='_is_metrics.txt', required=True)
parser.add_argument('-wgsmetrics', '--WgsMetricsAlgo', type=str, help='deduped_WgsMetricsAlgo', required=True)
parser.add_argument('-qualityyield', '--QualityYield', type=str, help='deduped_QualityYield', required=True)
parser.add_argument('-aln', '--aln_metrics', type=str, help='aln_metrics.txt', required=True)

args = parser.parse_args()

general_file = args.general_stat
is_file = args.is_metrics
wgsmetrics_file = args.wgsmetrics
qualityyield_file = args.qualityyield
aln_file = args.aln_metrics

##### Table
## general stat: % GC
dat = pd.read_table(general_file)
qualimap = dat.loc[:, dat.columns.str.startswith('QualiMap')]
qualimap.insert(loc=0, column='Sample', value=dat['Sample'])
qualimap_stat = qualimap.dropna()
part1 = fastqc_stat.loc[:,['Sample', 'FastQC_mqc-generalstats-fastqc-percent_duplicates','FastQC_mqc-generalstats-fastqc-total_sequences']]

## is_metrics: median insert size
## deduped_WgsMetricsAlgo: 1x, 5x, 10x, 30x, median coverage
with open(html_file) as file:
origDict = json.load(file)
newdict = {(k1, k2):v2 for k1,v1 in origDict.items() \
for k2,v2 in origDict[k1].items()}
df = pd.DataFrame([newdict[i] for i in sorted(newdict)],
index=pd.MultiIndex.from_tuples([i for i in sorted(newdict.keys())]))
gc = []
at = []
for i in part1['Sample']:
sub_df = df.loc[i,:]